Phân tích thành nhân tử:
( 3x + 1 )2 - ( x + 1 )2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)
\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)
\(\left(5x-10\right)\left(x^2-1\right)-\left(3x-6\right)\left(x^2-2x+1\right)\)
\(=\left(5x-10\right)\left(x-1\right)\left(x+1\right)-\left(3x-6\right)\left(x-1\right)^2\)
\(=\left(x-1\right)\left[\left(5x-10\right)\left(x+1\right)-\left(3x-6\right)\left(x-1\right)\right]\)
\(=\left(x-1\right)\left[5\left(x-2\right)\left(x+1\right)-3\left(x-2\right)\left(x-1\right)\right]\)
\(=\left(x-1\right)\left[\left(x-2\right)\left(5x+5-3x+3\right)\right]\)
\(=\left(x-1\right)\left[\left(x-2\right)\left(2x+8\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(2x+8\right)\)
Đặt \(x^2+3x+1=t\)
\(\Rightarrow\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6=t.\left(t+1\right)-6\)
\(=t^2+t-6=\left(t^2-2t\right)+\left(3t-6\right)\)
\(=t\left(t-2\right)+3\left(t-2\right)=\left(t-2\right)\left(t+3\right)\)
\(=\left(x^2+3x+1-2\right)\left(x^2+3x+1+3\right)\)
\(=\left(x^2+3x-1\right)\left(x^2+3x+4\right)\)
\(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1=a\)ta có :
\(a\left(a+1\right)-6\)
\(=a^2+a-6\)
\(=a^2+6a-a-6\)
\(=\left(a^2+6a\right)-\left(a+6\right)\)
\(=a\left(a+6\right)-\left(a+6\right)\)
\(=\left(a+6\right)\left(a-1\right)\)
Thay \(a=x^2+3x+1\)vào A ta có :
\(A=\left(x^2+3x+1+6\right)\left(x^2+3x+1-1\right)\)
\(=\left(x^2+3x+7\right)\left(x^2+3x\right)\)
\(\left(3x-1\right)^2-\left(x+1\right)^2=\left(3x-1-x-1\right)\left(3x-1+x+1\right)=8x\left(x-1\right)\)
\(\left(x^2+3x+1\right)^2-1^2\)
\(\left(x^2+3x\right)\left(x^2+3x+2\right)\)
\(\left(x^2+3x\right)\left(x^2+x+2x+2\right)\)
\(\left(x^2+3x\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(\left(x^2+3x\right)\left(x+1\right)\left(x+2\right)\)
\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(\left(x^2+3x+1\right)=a\), ta được:
\(a\left(a+1\right)-6\)\(=a^2+a-6\)\(=\left(a^2+3a\right)-\left(2a+6\right)\)\(=a\left(a+3\right)-2\left(a+3\right)\)
\(=\left(a+3\right)\left(a-2\right)\)
Thay \(a=\left(x^2+3x+1\right)\), ta được:
\(=\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)
(-x-1)2-(3x-4)2=(x2+2x+1)-(9x2-24x+16)=-8x2+26x-15=\(-8\left(x-\dfrac{5}{2}\right)\left(x-\dfrac{3}{4}\right)\)
1) \(x\left(x-1\right)+\left(1-x\right)^2\)
\(=x\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x-1\right)\left(x+x-1\right)\)
\(=\left(x-1\right)\left(2x-1\right)\)
2) \(2x\left(x-2\right)-\left(x-2\right)^2\)
\(=\left(x-2\right)\left[2x-\left(x-2\right)\right]\)
\(=\left(x-2\right)\left(2x-x+2\right)\)
\(=\left(x-2\right)\left(x+2\right)\)
3) \(3x\left(x-1\right)^2-\left(1-x\right)^3\)
\(=3x\left(x-1\right)^2+\left(x-1\right)^3\)
\(=\left(x-1\right)^2\left(3x+x-1\right)\)
\(=\left(x-1\right)^2\left(4x-1\right)\)
4) \(3x\left(x+2\right)-5\left(x+2\right)^2\)
\(=\left(x+2\right)\left[3x-5\left(x+2\right)\right]\)
\(=\left(x+2\right)\left(3x-5x-10\right)\)
\(=\left(x+2\right)\left(-2x-10\right)\)
\(=-2\left(x+2\right)\left(x+5\right)\)
TL:
\(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(4x+2\right)2x\)
\(=4x\left(2x+1\right)\)
\(\left(3x+1\right)^2-\left(x+1\right)^2\)
=\(\left(3x+1-x-1\right)\cdot\left(3x+1+x+1\right)\)
=\(2x\cdot\left(4x+2\right)\)
các bạn nhớ k cho mk nha