K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

25 tháng 12 2021

Thank you

 

2 tháng 6 2017

31 tháng 10

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau

 

8 tháng 11 2015

1)Gọi 2 số tự nhiên liên tiếp là n và n+1

Đặt ƯCLN(n,n+1)=d

Ta có: n chia hết cho d

n+1 chia hết cho d

=>n+1-n chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(n,n+1) =1

=>n và n+1 là 2 số nguyên tố cùng nhau

2)Gọi ƯCLN(2n+5,3n+7)=d

Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d

3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d

=>6n+15-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(2n+5,3n+7)=1

=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

8 tháng 11 2015

a) 

Gọi 2 số tự nhiên liên tiếp là n; n+1 

Gọi ƯCLN ( n;n+1) la d 

=> n chia hết cho d; n+1 chia hết cho d      

=> n+1-n chia hết cho d  

=> 1 chia hết cho d 

=> d =1

=>  ƯCLN ( n;n+1) =1

=>  hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau

b) 

Gọi ƯCLN( 2n+5;3n+7) la  d 

=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d 

=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d 

=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d 

=> 6n+15-(6n+14) chia hết cho d 

=> 1 chia hết cho d 

=> d= 1

=>  ƯCLN( 2n+5;3n+7)=1

=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau

26 tháng 11 2020

chứng minh rằng 

a) hai số lẻ liên tiếp 

b) 2N+5 VÀ 3n+7

10 tháng 10 2015

tớ chỉ làm mẫu 1 câu thôi nhé, lười lắm

gọi 1 số là a, số kia là a+1

gọi ước chung lỡn nhất của 2 số đó là d

=> a chia hết cho d

a+1 chia hết cho d

=> a+1-a chia hết cho d

=> 1 chia hết cho d

d thuộc ước của 1 , d=1

=> 2 số đó nguyên tố cùng nhau, ok?

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.