K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2018

Đặt T là số nguyên thì 12n2 + 1 là số chính phương lẻ.

Đặt \(12n^2+1=\left(2k-1\right)^2,\left(k\in N\right)\)

\(\Leftrightarrow12n^2+1=4k^2-4k+1\)

\(\Leftrightarrow12n^2=4k^2-4k\)

\(\Leftrightarrow3n^2=k\left(k-1\right)\)

\(\Leftrightarrow k\left(k-1\right)⋮3\Rightarrow k⋮3;k-1⋮3\)

+) Nếu \(k⋮3\Rightarrow n^2=\left(\dfrac{k}{3}\right).\left(k-1\right)\). Mà \(\left(\dfrac{k}{3};k-1\right)=1\)nên đặt \(\dfrac{k}{3}=x^2\Rightarrow k=3x^2\)

Đặt \(k-1=y^2\Rightarrow k=y^2+1\)

\(\Rightarrow3x^2=y^2+1\equiv2\left(mod3\right)\)

Vô lý vì 1 số chính phương chia cho 3 chỉ dư 0 hoặc 1.

+) Nếu \(k-1⋮3\)

\(\Rightarrow n^2=\dfrac{k.\left(k-1\right)}{3}\)\(\left(k;\dfrac{\left(k-1\right)}{3}\right)=1\)nên đặt k = z2\(\dfrac{\left(k-1\right)}{3}=t^2\)

\(\Rightarrow T=...=2+2\left(2k-1\right)=4k=4z^2=\left(2z^2\right)\)là 1 số chính phương

=> ĐPCM

7 tháng 7 2016

Ta có : 3m2 + m = 4n2 + n 
tương đương với 4(m2 - n2) + (m - n) = m2 
hay là (m - n)(4m + 4n + 1) = m2 (*)

Gọi d là ước chung lớn nhất của m - n và 4m + 4n + 1 thì (4m + 4n + 1) + 4(m - n) chia hết cho d => 8m + 1 chí hết cho d.

Mặt khác, từ (*) ta có : m2 chia hết cho d2 => m chia hết cho d.

Từ 8m + 1 chia hết cho d và m chia hết cho d ta có 1 chia hết cho d => d = 1.

Vậy m - n và 4m + 4n + 1 là các số tự nhiên nguyên tố cùng nhau, thỏa mãn (*) nên chúng đều là các số chính phương. 

3 tháng 4 2016

Để giải được bài toán sau thì ta liên tưởng đến một tính chất rất đặc biệt và hữu ích được phát biểu như sau:

\("\) Nếu  \(a,b\)  là hai số tự nhiên nguyên tố cùng nhau và  \(a.b\)  là một số chính phương thì \(a\)  và  \(b\) đều là các số chính phương  \("\)

Ta có:

\(4m^2+m=5n^2+n\)

\(\Leftrightarrow\)  \(4m^2+m-5n^2-n=0\)

\(\Leftrightarrow\)  \(5m^2-5n^2+m-n=m^2\)

\(\Leftrightarrow\)  \(5\left(m^2-n^2\right)+\left(m-n\right)=m^2\)

\(\Leftrightarrow\)  \(\left(m-n\right)\left(5m+5n+1\right)=m^2\)  \(\left(\text{*}\right)\)

Gọi  \(d\)  là ước chung lớn nhất của  \(m-n\)  và   \(5m+5n+1\)  \(\left(\text{**}\right)\), khi đó:

\(m-n\)  chia hết cho  \(d\)   \(\Rightarrow\)  \(5\left(m-n\right)\)  chia hết cho  \(d\)

\(5m+5n+1\)  chia hết cho  \(d\)

nên   \(\left[\left(5m+5n+1\right)+5\left(m-n\right)\right]\)  chia hết cho  \(d\)

\(\Leftrightarrow\)   \(10m+1\)  chia hết cho  \(d\)   \(\left(1\right)\)

Mặt khác, từ  \(\left(\text{*}\right)\), với chú ý cách gọi ở \(\left(\text{**}\right)\), ta suy ra được:  \(m^2\)  chia hết cho  \(d^2\)

Do đó,  \(m\)  chia hết cho  \(d\)

  \(\Rightarrow\)   \(10m\)  chia hết cho  \(d\)   \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\), ta có  \(1\)  chia hết cho  \(d\)  \(\Rightarrow\)  \(d=1\)

Do đó,  \(m-n\)  và  \(5m+5n+1\)  là các số tự nhiên nguyên tố cùng nhau  

Kết hợp với  \(\left(\text{*}\right)\)  và điều mới chứng minh trên, thỏa mãn tất cả các điều kiện cần thiết ở tính chất nêu trên nên ta có đpcm

Vậy,   \(m-n\)  và  \(5m+5n+1\)  đều là các số chính phương.

17 tháng 6 2015

3m2+m=4n2+n

=>(m-n)(4m+4n+1)=m2(1)(phân tích ra là về cái ban đầu nhé)

Gọi d là 1 ước chung của m-n và 4m+4n+1

=>(m-n)(4m+4n+1) chia hết cho d.d=d2

Từ (1) =>m2 chia hết cho d2

=>m chia hết cho d

Mà m-n cũng chia hết cho d => n chia hết cho d

=>4m+4n+1 chia d dư 1(vô lí vì d được giả sử là ước của 4m+4n+1)

=>4m+4n+1 và m-n nguyên tố cùng nhau

 khi phân tích a hoặc b có thừa số nguyên tố p với mũ lẻ mà 2 số này nguyên tố cùng nhau nên số còn lại không chưa p =>m2 bằng tích của p với 1 số khác p.Mà m2 là số chính phương nên điều trên là vô lí

=>m-n và 4m+4n+1 phải cùng là số chính phương(ĐPCM)

Hơi khó hiểu nhưng đúng đó Đây là mình cố giải thích cho bạn chứ thực ra k có dòng giải thích dài dài kia đâu

25 tháng 2 2018

Khó lắm

29 tháng 3 2015

giải :

Ta có : 3m2 + m = 4n2 + n 
tương đương với 4(m2 - n2) + (m - n) = m2 
hay là (m - n)(4m + 4n + 1) = m2 (*)

Gọi d là ước chung lớn nhất của m - n và 4m + 4n + 1 thì (4m + 4n + 1) + 4(m - n) chia hết cho d => 8m + 1 chí hết cho d.

Mặt khác, từ (*) ta có : m2 chia hết cho d2 => m chia hết cho d.

Từ 8m + 1 chia hết cho d và m chia hết cho d ta có 1 chia hết cho d => d = 1.

Vậy m - n và 4m + 4n + 1 là các số tự nhiên nguyên tố cùng nhau, thỏa mãn (*) nên chúng đều là các số chính phương. 

29 tháng 3 2015

câu trả lời này ở trên mạng đó!!!!

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP