Cho f(x)= 0.7x^4 + 0.2x^2 - 5
g(x)= 0,3x^4 + 0,1x^2 - 8
Chứng tỏ với mọi giá trị của x thì giá trị f(x) luôn lớn hơn giá trị của g(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Bạn có thể tự làm
b,Có f(x)+g(x)-h(x)=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=2x^2+3x=x(2x+3)
Để f(x)+g(x)-h(x)=0
thi x(2x+3)=0
suy ra x=0 hoặc x=-3/2
c,f(x)-3x+5=4x^2+3x-2-3x+5=4x^2+3>0 với mọi x
Chúc bạn học tốt!
a) \(f\left(x\right)=4x^2+3x-2\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\left(\frac{-1}{2}\right)^2+3.\frac{-1}{2}-2\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=4.\frac{1}{4}+\frac{-3}{2}-\frac{4}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=1+\frac{-7}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{2}{2}+\frac{-7}{2}\)
\(\Leftrightarrow f\left(\frac{-1}{2}\right)=\frac{-5}{2}\)
Bài 1:
Để \(F\left(x\right)=G\left(x\right)\) thì \(3x^2-8x+4=3x+4\)
\(\Leftrightarrow3x^2-11x=0\)
\(\Leftrightarrow x\left(3x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{3}\end{matrix}\right.\)
a) Rút gọn E Þ đpcm.
b) Điều kiện xác định E là: x ≠ ± 1
Rút gọn F ta thu được F = 4 Þ đpcm
ta có hàm số y = f(x) = 3x2 + 5
vì x2 \(\ge\)0 \(\forall\)x \(\Rightarrow\)3x2 + 5 \(\ge\)5 hay y \(\ge\)5
Vậy với mọi giá trị của x thì hàm số đã cho luôn nhận giá trị dương
Vì x2>0 ( với mọi x ) nên 3x2+5 > 0
Vậy f(x) = 3x2 + 5 luôn nhận giá trị dương với mọi giá trị x ( đpcm ).
XONG RỒI ĐÓ...
Ta có: \(f\left(x\right)-g\left(x\right)=\left(0,7x^4+0,2x^2-5\right)-\left(0,3x^4+0,1x^2-8\right)\)
\(=0,7x^4+0,2x^2-5-0,3x^4-0,1x^2+8\)
\(=0,4x^4+0,1x^2+3\)
Vì \(\hept{\begin{cases}0,4x^4\ge0\\0,1x^2\ge0\end{cases}}\)nên \(0,4x^4+0,1x^2+3>0\)
\(\Rightarrow f\left(x\right)-g\left(x\right)>0\)hay \(f\left(x\right)>g\left(x\right)\forall x\)