bỏ dấu căn
\(\sqrt(x+\sqrt(2x-1)) \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)+\left(2x-\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-3x\sqrt{x}+2x-\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(S=\frac{x\sqrt{x}-2x+2\sqrt{x}-1+2x\sqrt{x}+x-2\sqrt{x}-1-3x\sqrt{x}+2x-\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(S=\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(S=\frac{1}{\sqrt{x}+1}\)
Vậy \(S=\frac{1}{\sqrt{x}+1}\)
a: ĐKXĐ: 2x-10>=0
=>2x>=10
=>x>=5
b: \(\sqrt{A^2B}=\sqrt{A^2}\cdot\sqrt{B}=\left|A\right|\cdot\sqrt{B}\)
\(\sqrt{72}=\sqrt{36\cdot2}=6\sqrt{2}\)
c: \(A=\sqrt{16}+\sqrt{81}=4+9=13\)
\(B=\sqrt{\dfrac{\left(15\sqrt{5}+5\sqrt{200}-3\sqrt{450}\right)}{\sqrt{10}}}\)
\(=\sqrt{\dfrac{15}{\sqrt{2}}+5\sqrt{20}-3\sqrt{45}}\)
\(=\sqrt{\dfrac{15\sqrt{2}+2\sqrt{5}}{2}}=\sqrt{\dfrac{30\sqrt{2}+4\sqrt{5}}{4}}\)
\(=\dfrac{\sqrt{30\sqrt{2}+4\sqrt{5}}}{2}\)
\(C=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\left(2+\sqrt{3}\right)\)
\(=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{\sqrt{3}}-\left(2+\sqrt{3}\right)+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(=2+\sqrt{3}-2-\sqrt{3}+\sqrt{2}=\sqrt{2}\)