K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: BH=CH

b: BH=CH=6cm

=>AH=8cm

c: Xét ΔAHE có 

AK là đường cao

AK là đường trung tuyến

Do đó: ΔAHE cân tại A

hay AE=AH

d: Xét ΔADH có

AI là đường cao

AI là đườngtrung tuyến

Do đó:ΔADH cân tại A

=>AD=AH=AE

=>ΔADE cân tại A

a) +Xét tam giác ABD :

ta có góc B = 60* ,góc BAD = 60*

mà góc B + góc BAD + ADB = 180* ( tổng 3 góc )

=> góc ADB = 60*

=> tam giac ABD là tam giác đều ( mỗi góc = 60*) => AB = BD = AD = 7cm

ta có H là trung diem BD => AH là duong trung tuyến,là tia phan giac goc BAD,là duong cao cùa tam giac ABD ( tam giac ABD đều ) => HD = HB = 1/2 BD = 3.5cm

+áp dụng định lí pitago vào tam giác ABH vuong tai H có AB = 7cm,BH = 3.5 cm :

AB^2 = AH^2 + BH^2 => em tự tính AH nhé

+ta có BH + HC = BC => HC = BC - HB = 15 - 3.5 = 11.5cm

+áp dụng dinh li pitago vào tam giac vuong AHC vuong tai H có AH ( lúc nãy tính ) và HC = 11.5cm

AC^2 =AH^2 + HC^2 => tự tính AC

b) em tính AB ^2 + AC^2 có = BC ^2 ko? nếu = thì tam giac ABC vuong tai A

 

 a)Chứng minh được tam giác ABH= tam giác ACH( ch-cgv)

  Suy ra: HB=HC(yttư)(đpcm). Vậy H là trung điểm BC.Suy ra HB=HC=BC:2=8:2=4

       và góc BAH=góc CAH(yttư)(đpcm)

b)  Ta có: tam giác ABH vuông tại H(AH vuông góc BC)

   Suy ra AH^2 + BH^2 =AB^2

   Suy ra AH^2+4^2= 5^2

   Suy ra AH^2= 9

    Mà AH>0

Suy ra AH=3

c) Xét tam giác ADH và tam giác AEH, ta có:

  Góc ADH= Góc AEH=90 ĐỘ ( HD vuông góc AB, HE vuông góc AC) 

AH là cạnh chung

Góc DAH= Góc EAH(yttư do tam giác ABH= tam giác ACH)

Suy ra tam giác ADH= tam giác AEH(ch-gh)

Suy ra HD=HE(yttư)

Suy ra tam giác HDE cân tại H(đpcm)

 

 

a: Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

=>AB=AD

b: Ta có: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}+30^0=90^0\)

=>\(\widehat{ABC}=60^0\)

Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)

nên ΔABD đều

c: Ta có: ΔABD đều

=>\(\widehat{BAD}=60^0\)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)

=>\(\widehat{CAD}=90^0-60^0=30^0\)

Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)

Do đó: ΔDHA=ΔDEC

=>AH=EC

d: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)

=>\(\dfrac{5}{BC}=sin30=\dfrac{1}{2}\)

=>\(BC=5\cdot2=10\left(cm\right)\)

Xét ΔAHB vuông tại H có \(sinB=\dfrac{AH}{AB}\)

=>\(\dfrac{AH}{5}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(AH=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)

13 tháng 2 2022

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=12cm\)

Ta có : \(S_{ABC}=\dfrac{1}{2}AB.AC;S_{ABC}=\dfrac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60}{13}cm\)

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{25}{13}cm\)

-> CH = BC - BH = \(13-\dfrac{25}{13}=\dfrac{154}{13}\)cm