\(CM:a^7-a⋮7\forall a\inℤ.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=n[n2(n2−7)2−36]=n[(n3−7n)2−36]�=�[�2(�2−7)2−36]=�[(�3−7�)2−36]
=n(n3−7n−6)(n3−7n+6)=�(�3−7�−6)(�3−7�+6)
=n(n−3)(n+1)(n+2)(n−2)(n−1)(n+3)=�(�−3)(�+1)(�+2)(�−2)(�−1)(�+3)
⇒A⇒� là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7
a7-a chứ nhỉ :))
a^7 - a = a.(a^6 - 1)= a.(a^3 -1).(a^3+1)=a.(a-1).(a+1).(a^2-a+1).(a^2+a+1)
Đến đây xét các TH a= 7k , 7k+1.... thay vào một trong mấy thừa số vừa tách để CM chia hết cho 7
có một cách phân tích ra thành tích 7 số nguyên liên tiếp nhưng tui ngại đánh máy :v
Với a, b thuộc Z và không chia hết cho 7
Theo định lí fecmat: \(a^6\equiv1\left(mod7\right)\); \(b^6\equiv1\left(mod7\right)\)(1)
Đặt: \(a^6=u;b^6=v\)
Ta có: \(a^{42}-b^{42}=u^7-v^7=\left(u-v\right)\left(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\right)\)
Từ (1) => \(u-v\equiv1-1\equiv0\left(mod7\right)\)=> \(u-v⋮7\)
và \(u^6;u^5v;u^4v^2;u^3v^3;u^2v^4;uv^5;v^6\equiv1\left(mod7\right)\)
\(\Rightarrow u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\equiv1+1+1+1+1+1+1\equiv7\equiv0\left(mod7\right)\)
=> \(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6⋮7\)
=> \(\left(u-v\right)\left(u^6+u^5v+u^4v^2+u^3v^3+u^2v^4+uv^5+v^6\right)⋮49\)
\(a^2+b^2+ab+2=a^2+2.\dfrac{1}{2}ab+\dfrac{b^2}{4}+\dfrac{3b^2}{4}+2=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}+2\)
Do : \(\left\{{}\begin{matrix}\left(a+\dfrac{b}{2}\right)^2\ge0\\\dfrac{3b^2}{4}\ge0\end{matrix}\right.\)\(\Rightarrow\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}+2>0\)
p(x) = x3 - a2x + 2016b = x(x-a)(x+a) + 2016b
* a = 3k+1: p(x) = x(x-1-3k)(x+1+3k) + 2016b
Trong 3 số x - 1; x; x + 1 tồn tại một số chia hết cho 3
. x - 1 chia hết cho 3 => x-1-3k chia hết cho 3 => p(x) chia hết cho 3
. x chia hết cho 3 => p(x) chia hết cho 3
. x + 1 chia hết cho 3 => x+1+3k chia hết cho 3 => p(x) chia hết cho 3
* a = 3k-1: p(x) = x(x-3k+1)(x+3k-1) + 2016b
Trong 3 số x - 1; x; x + 1 tồn tại một số chia hết cho 3
. x - 1 chia hết cho 3 => x-1+3k chia hết cho 3 => p(x) chia hết cho 3
. x chia hết cho 3 => p(x) chia hết cho 3
. x + 1 chia hết cho 3 => x+1-3k chia hết cho 3 => p(x) chia hết cho 3
Vậy với mọi a; b thuộc Z; a không chia hết cho 3 thì p(x) chia hết cho 3 với mọi x thuộc Z
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-1\right)\left(n-2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)
c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)
\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)⋮6\forall n\)(vì đó là tích 3 số tự nhiên liên tiếp).
a) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)
\(\Leftrightarrow-15x^2+46x-35+15x^2-4x-4=4\)
\(\Leftrightarrow42x-39=4\)
\(\Leftrightarrow42x=4+39\)
\(\Leftrightarrow42x=43\)
\(\Leftrightarrow x=\frac{43}{42}\)
\(\Rightarrow x=\frac{43}{42}\)
b) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3+3\right)x=14\)
\(\Leftrightarrow x^3+8-x^4-3x=14\)
\(\Leftrightarrow x^3+8-x^4-3x=14-14\)
\(\Leftrightarrow-x^4+x^3-3x-6=0\)
=> x k có gt thỏa mãn
\(a^7-a=a\left(a^6-1\right)=a\left(a^3+1\right)\left(a^3-1\right)\)
Rồi sao nữa ?