K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

\(a,Q=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}};x>0;x\ne1;x\ne4\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\frac{1}{\sqrt{x}}\)

\(=\frac{2}{x-1}\)

4 tháng 8 2019

\(a,\)\(Q=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right).\)\(\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\)\(\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)^2}.\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{x-1}\)\(\left(đpcm\right)\)

\(b,Q=\frac{2}{x-1}\)

\(Q\in Z\Leftrightarrow\frac{2}{x-1}\in Z\Rightarrow x-1\inƯ_2\)

Mà \(Ư_2=\left\{\pm1;\pm2\right\}\)

TH1 : \(x-1=-1\Rightarrow x=0\)

TH2 : \(x-1=1\Rightarrow x=2\)

TH3 : \(x-1=-2\Rightarrow x=-1\)

TH4 :\(x-1=2\Rightarrow x=3\)

\(\Rightarrow\)x nguyên lớn nhất là 3 để Q là số nguyên

23 tháng 5 2021

Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé

17 tháng 10 2018

\(a)\)\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x-3}}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(R=\frac{3\sqrt{x}+3}{\sqrt{x}+3}.\frac{\sqrt{x}-3}{\sqrt{x+1}}\)

\(R=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)

\(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

\(b)\) Ta có : \(R< -1\)

\(\Leftrightarrow\)\(\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}< -1\)

\(\Leftrightarrow\)\(\frac{\sqrt{x}-3}{\sqrt{x}+3}< \frac{-1}{3}\)

\(\Leftrightarrow\)\(3\sqrt{x}-9< -\sqrt{x}-3\)

\(\Leftrightarrow\)\(4\sqrt{x}< 6\)

\(\Leftrightarrow\)\(\sqrt{x}< \frac{3}{2}\)

\(\Leftrightarrow\)\(x< \frac{9}{4}\)

Chúc bạn học tốt ~ 

25 tháng 8 2020

ĐKXĐ: \(x\ge1\); x khác 2; 3

Ta có: 

\(\frac{1}{\sqrt{x}-\sqrt{x-1}}=\frac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}=\sqrt{x}+\sqrt{x-1}\)

\(\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-1-2}=\sqrt{x-1}+\sqrt{2}\)

=> \(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x}+\sqrt{x-1}-\left(\sqrt{x-1}+\sqrt{2}\right)=\sqrt{x}-\sqrt{2}\)

\(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x}-x}=\frac{2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)

=> \(P=\left(\sqrt{x}-\sqrt{2}\right).\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}=\frac{2-\sqrt{x}}{\sqrt{x}}\)

29 tháng 6 2019

ĐK : x>0, x khác 1

\(A=\left(\frac{1}{\sqrt{x}+1}+\frac{2\left(1-\sqrt{x}\right)}{x\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{2}{x-1}\right)\)

\(=\left(\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)