Cho a + b/a - b = c + d/c - d
C/M:a/b = c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{B}>\widehat{C}\)
nên AB<AC
Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔBDC có HB<HC
mà HB là hình chiếu của BD trên BC
và HC là hình chiếu của CD trên BC
nên BD<CD
xét tam giác ABC có góc B lớn hơn góc C.
==> AB<AC (quan hệ giữa cạnh và góc đối diện trong 1 tamgiac)
Xét ΔABC ta có
AB<AC(cmt)
mà HC là hình chiếu của AC trên BC
HB là hình chiếu của AB trên BC
==> HB<HC
Xét ΔBDC ta có
HB<HC( c/m ở câu a)
mà HC là hình chiếu của CD trên BC
HB là hình chiếu của BD trên BC
===> BD<CD
Ta có:\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a-b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right).\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
\(\Leftrightarrow dpcm\)
Ta có:
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)+3abc=3abc\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)
Ta có:
\(a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\)
\(\left(b-c\right)^2\ge0\)
\(\left(c-a\right)^2\ge0\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
Áp dụng BĐT AM-GM ta có:
\(VT=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
\(\ge3\sqrt[3]{\frac{abc}{\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)}}\)
Cần chứng minh \(3\sqrt[3]{\frac{abc}{\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)}}\ge3\)
\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
Ta có: \(\left(a+b-c\right)\left(b+c-a\right)\le b^2\)
Tương tự nhân theo vế ta có DPCM
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\Leftrightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)
\(\Leftrightarrow ac+bc-ad-bd=ac-bc+ad-bd\)
\(\Leftrightarrow ac+bc-ad-bd-ac+bc-ad+bd=0\)
\(\Leftrightarrow2bc-2ad=0\)
\(\Leftrightarrow2bc=2ad\)
\(\Leftrightarrow bc=ad\)
\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)(đpcm)