\(\in\)Z

\(a^5+b^5=2014.\left(c^5+d^5\right)\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi

24 tháng 10 2016

1

24 tháng 10 2016

1

7 tháng 5 2018

p(x)=ax3+bx2+cx+d

p(x)⋮5 ∀ x

=> p(5)⋮5=> (a53+b52+c5+d)⋮5

=> d⋮5

=> (ax3+bx2+cx)⋮5

=>p(1)=a13+b12+c1[p(1)⋮5]

=a+b+c

p(-1)=a(-1)3+b(-1)2+c(-1)[p(-1)⋮5]

=-a+b-c

=>p(1)+p(-1)=(a+b+c)+(-a+b-c)

=b⋮5

=> (ax3+cx)⋮5

ax3+cx

=x(ax2+c)⋮5

=> ax2+c⋮5

Với x=5=> a.52+c⋮5

=> c⋮5

=> ax2⋮5

=>a⋮5

Vậy a,b,c,d ⋮5

10 tháng 4 2020

Vì  \(P\left(x\right)=ax^2+bx+c\) với mọi x

=> Ta có: 

Với x = 0 => \(P\left(0\right)=c⋮5\)

Với x = 1 => \(P\left(1\right)=a+b+c⋮5\Rightarrow a+b⋮5\)

Với  x = -1 => \(P\left(-1\right)=a-b+c⋮5\Rightarrow a-b⋮5\)

=> ( a + b ) + ( a  - b ) \(⋮\)

=> 2a \(⋮\)

=> a \(⋮\)

=> b \(⋮\)5

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

21 tháng 7 2017

\(P_{\left(x\right)}=ax^3+bx^2+cx+d⋮5\) với \(\forall x\in Z\) nên ta có:

+) \(P_{\left(0\right)}⋮5\Rightarrow a.0^3+b.0^2+c.0+d⋮5\Rightarrow d⋮5\)

+) \(P_{\left(1\right)}⋮5\Rightarrow a.1^3+b.1^2+c.1+d⋮5\Rightarrow a+b+c+d⋮5\). Mà \(d⋮5\Rightarrow a+b+c⋮5\) (1)

+) \(P_{\left(-1\right)}⋮5\Rightarrow a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d⋮5\)

\(\Rightarrow-a+b-c+d⋮5\Rightarrow-a+b-c⋮5\) (do \(d⋮5\)) (2)

+) Từ (1) và (2) \(\Rightarrow a+b+c-a+b-c⋮5\Rightarrow2b⋮5\Rightarrow b⋮5\)

+) Do \(a+b+c+d⋮5\)\(b,d⋮5\Rightarrow a+c⋮5\Rightarrow2a+2c⋮5\)

+) \(P_{\left(2\right)}⋮5\Rightarrow8a+4b+2c+d⋮5\Rightarrow8a+2c⋮5\Rightarrow8a+2c+2a+2c⋮5\)

\(\Rightarrow10a+4c⋮5\). Mà \(10a⋮5\Rightarrow4c⋮5\Rightarrow c⋮5\). Do \(a+c⋮5\Rightarrow a⋮5\)

Vậy \(a,b,c,d⋮5\)

21 tháng 7 2017

Câu này y hệt hồi lớp 7 bọn tui thi nè

=====================

+ Xét x = 0 => P(0) = d \(⋮5\)

+ Xét x = 1 => \(P_{\left(1\right)}=\)\(\left(a+b+c+d\right)⋮5\Rightarrow a+b+c⋮5\) (1)

+ Xét x = -1 => P(-1) = \(\left[\left(-a\right)+b+\left(-c\right)+d\right]⋮5\Rightarrow\left[\left(-a\right)+b+\left(-c\right)\right]⋮5\)(2)

Ta có (1) + (2) = \(2b⋮5\) mà (2,5 ) = 1 => b chia hết cho 5

+ Xét P(2) = (8a + 4b+2c+d ) \(⋮5\) => (8a + 2c) \(⋮5\)

<=> 6a + 2a + 2c = 6a+2(a+c) chia hết cho 5

Mà a+b+c chia hết cho 5 ( do d chia hết cho 5 ) , b chia hết cho 5

=> a+c chia hết cho 5

=> 2(a+c) chia hết cho 5

=> 6a chia hết cho 5 mà (6,5)=1

=> a chia hết cho 5

Vì a+ c chia hết cho 5 , a chia hết cho 5 => c chia hết cho 5

Vậy .......

Câu 2:

Để C là số nguyên thì \(\sqrt{x}-1+5⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{1;-1;5\right\}\)

hay \(x\in\left\{4;0;36\right\}\)