Giải pt
\(\frac{100}{x}-\frac{120}{x+20}=\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ne0;x\ne-6\)
⇔ \(\frac{720\left(x+6\right)}{6x\left(x+6\right)}=\frac{6x\left(x+6\right)}{6x\left(x+6\right)}+\frac{x\left(x+6\right)}{6x\left(x+6\right)}+\frac{6x\left(120-x\right)}{6x\left(x+6\right)}\)
\(\Rightarrow720x+4320=6x^2+36x+x^2+6x+720x-6x^2\)
\(\Leftrightarrow6x^2+36x+x^2+6x+720x-6x^2-720x-4320=0\)
\(\Leftrightarrow x^2+42x-4320=0\)
\(\Leftrightarrow x^2+90x-48x-4320=0\)
\(\Leftrightarrow\left(x+90\right)\left(x-48\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+90=0\\x-48=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-90\\x=48\end{matrix}\right.\) ( tm )
giải hệ pt sau: \(\hept{\begin{cases}-x+y=-24\\\frac{120}{x}-\frac{120}{y}=\frac{5}{6}\end{cases}}\)
câu a
x/3 +20 =x/2
x/2 - x/3 = 20
(3x-2x)/6 = 20
x/6 = 20
x = 20*6
x=120
câu b
x/(x-1) + 2x/x*x = 0 (x khác 0 ,1)
(x*x*x + 2x *(x-1)) / (x-1) * x*x = 0
x*x*x + 2*x*x - 2*x = 0
x*(x*x + 2*x -2 ) =0
x=0 hoặc x*x+2*x-2=0
x=0 hoặc (x*x + 2x + 1)-3 =0
x=0 hoặc (x + 1)*(x+1)=3
x=0 hoặc x+1 = căn 3 hoặc x=âm căn3
x=0 hoặc x =căn 3 trừ 1 hoặc x = âm căn 3 trừ một
Ta có : \(\frac{10-x}{100}+\frac{20-x}{110}+\frac{30-x}{120}=3\)
<=> \(\frac{10-x}{100}+\frac{20-x}{110}+\frac{30-x}{120}-3=0\)
<=> \(\left(\frac{10-x}{100}-1\right)+\left(\frac{20-x}{110}-1\right)+\left(\frac{30-x}{120}-1\right)\)= 0
<=> \(\left(\frac{-90-x}{100}\right)+\left(\frac{-90-x}{110}\right)+\left(\frac{-90-x}{120}\right)=0\)
<=> (-90-x) \(\left(\frac{1}{100}+\frac{1}{110}+\frac{1}{120}\right)=0\)
<=> -90- x = 0 vì \(\left(\frac{1}{100}+\frac{1}{110}+\frac{1}{120}\right)\ne0\) ( > 0)
<=> -x = 90
<=> x = -90
Vậy x = -90
(10-x)/100+(20-x)/110+(30-x)/120=3
=>(10-x)/100+(20-x)/110+(30-x)/120-3=0
=>(10-x)/100-1+(20-x)/110-1+(30-x)/120-1=0
=>(-90-x)/100+(-90-x)/110+(-90-x)/120=0
=.>(-90-x)(1/100+1/110+1/120)=0
=.>(-90-x)=0(vì(1/100+1/110+1/120)luôn>0)
=>x=-90
\(\Leftrightarrow\frac{200\left(x+20\right)}{2x\left(x+20\right)}-\frac{240x}{2x\left(x+20\right)}=\frac{x\left(x+20\right)}{2x\left(x+20\right)}\) đk: x\(\ne0\) , x \(\ne-20\)
\(\Rightarrow200x+4000-240x=x^2+20x\)
\(\Leftrightarrow-x^2-60x+4000=0\)
\(\Leftrightarrow x^2+60x-4000=0\)
\(\Leftrightarrow x^2+100x-40x-4000=0\)
\(\Leftrightarrow\left(x+100\right)\left(x-40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+100=0\\x-40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-100\left(tmđk\right)\\x=40\left(tmđk\right)\end{matrix}\right.\)
Vậy S\(=\left\{-100;40\right\}\)
\(\frac{100}{x}-\frac{120}{x+20}=\frac{1}{2}\)
\(\Leftrightarrow\frac{100}{x}-\frac{120}{x+20}=\frac{1}{2},x\ne0,x\ne-20\)
\(\Leftrightarrow\frac{100}{x}-\frac{120}{x+20}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{200\left(x+20\right)-240x-x\left(x+20\right)}{2x\left(x+20\right)}=0\)
\(\Leftrightarrow\frac{200x+4000-240x-x^2-20x}{2x\left(x+20\right)}=0\)
\(\Leftrightarrow-60x+4000-x^2=0\)
\(\Leftrightarrow-x^2-60x+4000=0\)
\(\Leftrightarrow x^2+60x-4000=0\)
\(\Leftrightarrow\frac{-60\pm\sqrt{60^2}-4.1\left(-4000\right)}{2}\)
\(\Leftrightarrow\frac{-60\pm\sqrt{3600+16000}}{2}\)
\(\Leftrightarrow\frac{-60\pm\sqrt{19600}}{2}\)
\(\Leftrightarrow\frac{-60\pm140}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{-60+140}{2}\\\frac{-60-140}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=40\\x=-100\end{matrix}\right.,x\ne0,x\ne-20\)