1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\) a) Tìm điều kiện của x để C có nghĩa. b) Rút gọn C. c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\) a) Phân tích A thành nhân tử. b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính giá trị...
Đọc tiếp
1. Cho biểu thức:
\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)
a) Tìm điều kiện của x để C có nghĩa.
b) Rút gọn C.
c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.
2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)
a) Phân tích A thành nhân tử.
b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)
3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)
\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)
4. Cho biểu thức: \(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)
a) Rút gọn P.
b) Tìm giá trị của x để \(P\:< -\frac{1}{2}\)
c) Tìm giá trị của x để P có giá trị nhỏ nhất.
5. Cho biểu thức:
\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm giá trị của x để Q có nghĩa.
b) Rút gọn Q.
c) Tìm giá trị của của x để Q có giá trị nguyên.
1) Để ý rằng : \(x\sqrt{x}-1=\sqrt{x^3}-\sqrt{1^3}=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
\(P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\)
\(P=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
2) \(x=28-6\sqrt{3}=\left(3\sqrt{3}-1\right)^2\)
\(\Rightarrow\sqrt{x}=3\sqrt{3}-1\)
Thay vào P ta được :
\(P=\frac{3\sqrt{3}-1}{28-6\sqrt{3}+3\sqrt{3}-1+1}\)
\(P=\frac{3\sqrt{3}-1}{28-3\sqrt{3}}\)
3) \(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}< \frac{1}{3}\)
\(\Leftrightarrow x+\sqrt{x}+1>3\sqrt{x}\)
\(\Leftrightarrow x-2\sqrt{x}+1>0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>0\)
BĐT cuối luôn đúng \(\forall x>1\)
Ta có đpcm
4) \(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{2}{7}\)
\(\Leftrightarrow2x+2\sqrt{x}+2=7\sqrt{x}\)
\(\Leftrightarrow2x-5\sqrt{x}+2=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy...
5) \(P=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(\Leftrightarrow Px+P\sqrt{x}+P=\sqrt{x}\)
\(\Leftrightarrow x\cdot P+\sqrt{x}\left(P-1\right)+P=0\)
Phương trình trên có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(P-1\right)^2-4P^2\ge0\)
\(\Leftrightarrow P^2-2P+1-4P^2\ge0\)
\(\Leftrightarrow-3P^2-2P+1\ge0\)
\(\Leftrightarrow-3\left(P^2+\frac{2}{3}P-\frac{1}{3}\right)\ge0\)
\(\Leftrightarrow P^2+\frac{2}{3}P-\frac{1}{3}\le0\)
\(\Leftrightarrow P^2+2\cdot P\cdot\frac{1}{3}+\frac{1}{9}-\frac{4}{9}\le0\)
\(\Leftrightarrow\left(P+\frac{1}{3}\right)^2\le\left(\frac{2}{3}\right)^2\)
\(\Leftrightarrow P+\frac{1}{3}\le\frac{2}{3}\)
\(\Leftrightarrow P\le\frac{1}{3}\)
Vậy \(maxP=\frac{1}{3}\Leftrightarrow x=1\)??
Đoạn này sai sai ta ?
Akai Haruma câu 5 sai sai ha chị ?