tìm x:
|2x-1| - |x+\(\frac{1}{3}\)| = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-1}{3}=\frac{5}{2x+1}\)
\(\Rightarrow\left(2x-1\right).\left(2x+1\right)=3.5=15\)
\(4x^2-1=15\)
\(4x^2=16\)
\(x^2=4^2=\left(-4\right)^2\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy.....
p.s: mk tìm x tuy nhiên ko dùng cách đấy, mk ko hiểu rõ cái đề ---sai sót ib vs mk
<=>\(\frac{\left(2x+1\right).\left(x+1\right)}{\left(x-3\right).\left(x+1\right)}\)+\(\frac{\left(3-2x\right).\left(x-3\right)}{\left(x+1\right).\left(x-3\right)}\)=0
<=>\(\frac{2x^2+3x+1}{\left(x-3\right).\left(x+1\right)}\)+\(\frac{3x-9-2x^2+6x}{\left(x+1\right).\left(x-3\right)}\)=0
<=>\(\frac{2x^2+3x+1+3x-9-2x^2+6x}{\left(x-3\right).\left(x+1\right)}\)=0
<=>\(\frac{12x-8}{\left(x-3\right).\left(x+1\right)}\)=0
=> 12x-8=0
=>x=2/3
2x+1x2−2x+1 −2x+3x−1 =0
\(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\frac{\left(2x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}=0.\)
\(\frac{2x^2+3x+1}{\left(x-1\right)^2\left(x+1\right)}-\frac{2x^2-x+3}{\left(x-1\right)^2\left(x+1\right)}=0\)
\(\frac{2x+4}{\left(x-1\right)^2\left(x+1\right)}=0\)
=> 2x+4=0
2x=-4
x=-2
Học tốt nhé!
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
a) 3x - 2 = 0 => 3x = 2 => x = 2/3
b) 2x - 1 = 0 => 2x = 1 => x = 1/2
c) 5 ( 4+2x) = 8+5x
<=> 20 + 10x = 8 + 5x
<=> 10x - 5x = 8 - 20
<=> 5x = -12
x = -12/5
d) \(\frac{1}{2}+\frac{3}{4}x=6-\frac{4}{5}x\)
\(\frac{3}{4}x+\frac{4}{5}x=6-\frac{1}{2}\)
\(\frac{31}{20}x=\frac{11}{2}\)
\(x=\frac{11}{2}:\frac{31}{20}=\frac{110}{31}\)
e) 3 + 2x = 4 - 8x
<=> 2x + 8x = 4 - 3
10 x = 1
x = 1/10
f \(5+\frac{1}{2}\left(x+5\right)=3\)
\(\frac{1}{2}\left(x+5\right)=3-5=-2\)
\(x+5=-2:\frac{1}{2}=-4\)
\(x=-4-5=1\)
Vậy ......
\(9\left(-\frac{1}{3}\right)^3x-3\left(-\frac{1}{2}\right)^2x+\left(-\frac{1}{3}\right)x+1=0\)
\(\Leftrightarrow-\frac{9}{27}x-\left(-\frac{3}{9}\right)x-\frac{1}{3}x+1=0\)
\(\Leftrightarrow-\frac{1}{3}x+\frac{1}{3}x-\frac{1}{3}x+1=0\)
\(\Leftrightarrow1-\frac{1}{3}x=0\)
\(\Leftrightarrow1=\frac{1}{3}x\)
\(\Leftrightarrow x=3\)
9. -1/27x- 3. 1/9x + (-1/3) x + 1=0
-1/ 3x- 1/3x-1/3x = -1
-2/3x=-1
x= -1 : -2/3
x= 3/2
(2x-3)( 3/4x+1) = 0
=> 2x-3= 0 hoặc 3/4x +1 = 0
=> 2x= 3 hoặc 3/4x = -1
=> x=3/2 hoặc x= -4/3
(5x-1)(2x-1/3) = 0
=> 5x-1 = 0 hoặc 2x-1/3 = 0
5x =1 hoặc 2x=1/3
x=1/5 hoặc x= 1/6
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
\(\left|2x-1\right|-\left|x+\frac{1}{3}\right|=0\)
\(\left|2x-1\right|=\left|x+\frac{1}{3}\right|\)
\(\Rightarrow\orbr{\begin{cases}2x-1=x+\frac{1}{3}\\2x-1=-\left(x+\frac{1}{3}\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-x=\frac{1}{3}+1\\2x-1=-x-\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-x=\frac{4}{3}\\2x+x=-\frac{1}{3}+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}1x=\frac{4}{3}\\3x=\frac{2}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{2}{9}\end{cases}}\)
Vậy \(x\in\text{{}\frac{4}{3};\frac{2}{9}\)}