Chứng minh rằng với a,b,c là các số thực dương và là số nguyên dương, ta có bất đẳng thức:
\(\frac{a^k}{b+c}\)+\(\frac{b^k}{c+a}\)+\(\frac{c^k}{a+b}\)\(\ge\)\(\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
C3
Đặt \(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(M=\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}\)
\(N=\frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}\)
Ta có : \(M+N=\left(\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}\right)+\left(\frac{c}{b+c}+\frac{a}{c+a}+\frac{b}{a+b}\right)\)
\(=\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\left(\frac{c}{c+a}+\frac{a}{c+a}\right)+\left(\frac{a}{a+b}+\frac{b}{a+b}\right)\)
\(=\frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a+b}{a+b}=1+1+1=3\)
Ta có :\(+)M+S=\frac{b}{b+c}+\frac{c}{c+a}+\frac{a}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{b+a}{b+c}+\frac{c+b}{c+a}+\frac{a+c}{b+a}\)
Hoàn toàn tương tự :\(+)N+S=\frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{b+c}{b+a}\)
Áp dụng Bất đẳng thức Cauchy cho 2 số không âm ta được :
\(\frac{b+a}{b+c}+\frac{c+b}{c+a}+\frac{a+c}{b+a}\ge3\sqrt[3]{\frac{\left(b+a\right)\left(c+b\right)\left(a+c\right)}{\left(b+c\right)\left(c+a\right)\left(b+a\right)}}=3\)
\(\frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{b+c}{b+a}\ge3\sqrt[3]{\frac{\left(a+c\right)\left(b+a\right)\left(b+c\right)}{\left(b+c\right)\left(c+a\right)\left(b+a\right)}}=3\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(M+N+2S\ge3+3=6\)
\(< =>3+2S\ge6< =>2S\ge6-3=3< =>S\ge\frac{2}{3}\)
Vậy ta có điều phải chứng minh
\(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right)\frac{9}{b+c+a+c+a+b}-3\)
\(=\frac{9}{2}-3=\frac{3}{2}\)
Dấu "=" xảy ra <=> a = b = c
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
k nguyên dương => \(k\ge1\)\(\Leftrightarrow\)\(a^k\ge a\)\(\Leftrightarrow\)\(\frac{a^k}{b+c}\ge\frac{a}{b+c}\)
Tương tự với 2 phân thức còn lại, cộng 3 bđt ta thu đc bđt Nesbit 3 ẩn => đpcm
Ủa bất đẳng thức \(a^k\ge a\)chỉ đúng với a>1 thôi