Cho a+b+c+d=a^2+b^2+c^2+d^2=4 tính ab+bc+cd+ad
mai mình nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)
\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)
Từ (1) và (2) => đpcm
b, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Có: \(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\left(1\right)\)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\left(2\right)\)
Từ (1) và (2) => đpcm
vì -1 hơn 1 hai số cho nên;
a) a/b và c/d ^2 =ab/cd hơn kém nhau 2
b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...
1) coi lại đề
2) a) tam giác ABD và tam giác ABC có
góc A=góc A, góc ABD=góc ACB
=> tam giác ABD đồng dạng tam giác ACB (g-g)
b) ta có tam giác ABD đồng dạng tam giác ACB=> AB/AC=AD/AB=> 6/9=AD/6=> AD=(6.6):9=4
Ta có: \(a+b+c+d=a^2+b^2+c^2+d^2\)
\(\Rightarrow\orbr{\begin{cases}a=b=c=d=1\\a=b=c=d=0\end{cases}}\)
mà \(a^2+b^2+c^2+d^2=4\Rightarrow a=b=c=d=1\)
\(\Rightarrow ab+bc+cd+ad=1+1+1+1=4\)
Vậy.....