Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)
\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)
Từ (1) và (2) => đpcm
b, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Có: \(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\left(1\right)\)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\left(2\right)\)
Từ (1) và (2) => đpcm
vì -1 hơn 1 hai số cho nên;
a) a/b và c/d ^2 =ab/cd hơn kém nhau 2
b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)mà\(\frac{a^2}{c^2}=\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
<=>(a2+b2)cd=(c2+d2)ab
<=>a2cd + b2cd -c2ab- d2ab=0
<=>ac(ad-bc)-bd(ad-bc)=0
<=>(ac-bd)(ad-bc)=0
<=>ac=bd
<=>a/b=c/d
Học tốt !
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
=> (a2+b2)cd=(c2+d2)ab
=> (a2+b2)cd-(c2+d2)ab=0
=> a2cd+b2cd-c2ab-d2ab=0
=> ac(ad-cb)+bd(bc-ad)=0
=> ac(ad-cb)-bd(ad-bc)=0
=> (ad-cb)(ac-bd)=0
=> ad-cb=0 hoặc ac-bd=0
+) Nếu ad-cb=0 thì ad=cb
+) Nếu ac-bd=0 thì ac=bd
=> \(\frac{a}{c}=\frac{d}{b}\)hay \(\frac{a}{b}=\frac{c}{d}\)
Đúng 100% nên nhớ k đúng cho mình với nha.