khai triển hằng đẳng thức:
a, ( 3x + 1)3
b, ( 2/3x +1)2
c, ( x - y)2 - (x + y)2
e,( x + y)2 - ( x - y)2
làm nhanh mình tick.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (x+y)2 = x2 + 2xy + y2
b, ( x-4y)2= x2 -8xy2 + 16y2
c, \(\left(3x+\frac{1}{3}\right)^2=9x^2+2xy+\frac{1}{9}\)
d,\(4x^2-81=\left(2x-9\right)\left(2x+9\right)\)
e,\(\left(xy+5\right)^2=x^2y^2+10xy+25\)
f,\(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)
g,\(1-9y^2=\left(1-3y\right)\left(1+3y\right)\)
h,\(\left(m-\frac{2}{3}n\right)^2=m^2-\frac{4}{3}mn+\frac{4}{9}n^2\)
Áp dụng công thức : (A + B)3 = A3 + 3A2B + 3AB2 + B3
(A - B)3 = A3 - 3A2B + 3AB2 -B3
a) (3x + 1)3 = (3x)3 + 3.(3x)2.1 + 3.3x.1 + 13 = 27x3 + 27x2 + 9x + 1
b) \(\left(\frac{x}{3}-1\right)^3=\left(\frac{x}{3}\right)^3-3\cdot\left(\frac{x}{3}\right)^2\cdot1+3\cdot\left(\frac{x}{3}\right)\cdot1^2-1^3\)
\(=\frac{x^3}{27}-3\cdot\frac{x^2}{9}\cdot1+3\cdot\frac{x}{3}\cdot1-1\)
= \(\frac{x^3}{27}-\frac{x^2}{3}+x-1\)
c) \(\left(2x-\frac{1}{x}\right)^3=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot\frac{1}{x}+3\cdot2x\cdot\left(\frac{1}{x}\right)^2-\left(\frac{1}{x}\right)^3\)
\(=8x^3-3\cdot4x^2\cdot\frac{1}{x}+6x\cdot\frac{1}{x^2}-\frac{1}{x^3}\)
\(=8x^3-12x+\frac{6}{x}-\frac{1}{x^3}\)
d) \(\left(-y^2+3x\right)^3=\left(3x-y^2\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot y^2+3\cdot3x\cdot y^4-y^6\)
= 27x3 - 27x2y2 + 9xy4 - y6
= -y6 + 9xy4 - 27x2y2 + 27x3
Tương tự câu cuối :>
Câu 1:
(3x+1)2_(x-2)2
=[(3x)2+2×3x×1+13]-[x2+2×x×2+22]
=(9x2+6x+1)-(x2+4x+4)
=9x2+6x+11-x2-4x-4
Câu 2 :
(y-3)2-(y-1)2
=(y2-2×y×3+32)-(y2+2×y×1+1)
= y2-6y+99-y2-2y-1
1) \(\left(3x-2a\right)^3\)
\(=\left(3x\right)^3-3\left(3x\right)^2\cdot2a+3\cdot3x\cdot\left(2a\right)^2-\left(2a\right)^3\)
\(=27x^3-3\cdot9x^2\cdot2a+3\cdot3x\cdot4a^2-8a^3\)
\(=27x^3-54ax^2+36a^2x-8a^3\)
2) \(\left(\dfrac{x+y}{3}\right)^3\)
\(=\dfrac{\left(x+y\right)^3}{27}\)
\(=\dfrac{x^3+3x^2y+3xy^2+y^3}{27}\)
3) \(\left(3x+\dfrac{y}{3}\right)^3\)
\(=\dfrac{\left(3x+y\right)^3}{27}\)
\(=\dfrac{27x^3+27x^2y+9xy^2+y^3}{27}\)
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)
a) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)
b) \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)
c) \(\left(-6x-\frac{2}{5}\right)^2=36x^2+\frac{24}{5}x+\frac{4}{25}\)
d) \(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)
e) \(\left(x-y\right)^2\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)
f) \(\left(\frac{1}{2}x-\frac{1}{3}y-1\right)^2=\frac{1}{4}x^2+\frac{1}{9}y^2+1-\frac{1}{3}xy-x+\frac{2}{3}y\)
\(a,\left(3x+1\right)^3=9x^3+9x^2+9x+1\)
\(b,\left(\frac{2}{3}x+1\right)^2=\frac{4}{9}x^2+\frac{4}{3}x+1\)
\(c,\left(x-y\right)^2-\left(x+y\right)^2=\left(x-y-x-y\right)\left(x-y+x+y\right)=-2y\cdot2x=-4xy\)
\(d,\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y\cdot2x=4xy\)