Cho a,b,c >0 và a+b+c=3
CMR (a+b)(b+c)(c+a)>= (ab+c)(bc+a)(ca+b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3=a+b+c\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)
BĐT tương đương:
\(3\left(ab+bc+ca\right)\ge abc\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+6\right]\)
\(\Leftrightarrow3\left(ab+bc+ca\right)\ge abc\left[15-2\left(ab+bc+ca\right)\right]\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(2abc+3\right)\ge15abc\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\left(2abc+3\right)^2\ge225\left(abc\right)^2\)
Do \(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)=9abc\)
Nên ta chỉ cần chứng minh:
\(\left(2abc+3\right)^2\ge25abc\)
\(\Leftrightarrow\left(1-abc\right)\left(9-4abc\right)\ge0\) (luôn đúng với \(0< abc\le1\))
Dấu "=" xảy ra khi \(a=b=c=1\)
a)\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a+b-2\sqrt{ab}\ge0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) với mọi x
->Đpcm
2 phần kia mai tui lm nốt cho h đi ngủ
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
Do đó a,b,c là 3 số dương.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM:
$\text{VT}=\sum \frac{a^4}{a(b+c)}\geq \frac{(a^2+b^2+c^2)^2}{\sum a(b+c)}=\frac{(a^2+b^2+c^2)^2}{2(ab+bc+ac)}$
$\geq \frac{(ab+bc+ac)^2}{2(ab+bc+ac)}=\frac{ab+bc+ac}{2}\geq \frac{3}{2}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
Áp dụng BĐT Cô-si vào 2 số dương, ta có :
\(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ca}{b}}=2c\) (1)
Tiếp tục ta lại có :
\(\dfrac{ca}{b}+\dfrac{ab}{c}\ge2a\) (2)
\(\dfrac{bc}{a}+\dfrac{ab}{c}\ge2b\) (3)
Cộng từng vế của (1),(2).(3) ta có :
\(2\left(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)
Rút gọn ta => ĐPCM .
#)Giải :
Áp dụng BĐT Cauchy :
\(\left(ab+c\right)\left(bc+a\right)\le\left(\frac{ab+c+bc+a}{2}\right)^2=\frac{\left(b+1\right)^2\left(c+a\right)^2}{4}\)
Tương tự với các cặp còn lại, ta được :
\(\left(bc+a\right)\left(ca+b\right)\le\frac{\left(c+1\right)^2\left(a+b\right)^2}{4}\)
\(\left(ab+c\right)\left(ca+b\right)\le\frac{\left(a+1\right)^2\left(b+c\right)^2}{4}\)
Nhân theo vế :
\(\left[\left(ab+c\right)\left(ca+b\right)\left(bc+a\right)\right]^2\le\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\frac{\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\right]^2}{64}\)
Mà : \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\le\left(\frac{a+1+b+1+c+1}{3}\right)^3=8\)
Do đó \(\left[\left(ab+c\right)\left(ac+b\right)\left(bc+a\right)\right]^2\le\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2.\frac{8^2}{64}\)
Từ đó suy ra \(\left(ab+c\right)\left(ca+b\right)\left(bc+a\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\Rightarrowđpcm\)