\(ABC\) là một hình tam giác với \(BC=8cm.\) Khoảng cách giữa điểm \(D\) và điểm \(E\) là \(4cm.\) Tính diện tích hình tam giác \(CDE.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Chieu cao cua tam giac ACD là 17 x 2 : 4 = 8,5 cm
chieu cao tam giac ACD cung chinh la chieu cao cua tam giac ABC vay dien h tam giac ABC la
(8,5 x 24) :2 = 102cm
a ) Chiều cao tam giác ADC là :
( 2 x 17 ) : 4 = 8,5 ( cm )
Diện tích tam giác ABC là :
24 x 8,5 : 2 = 102 ( cm2 )
b ) Diện tích tam giác ABD là :
102 - 17 = 85 ( cm2 )
Tỉ số phần trăm của diện tích tam giác ADC và diện tích tam giác ABD là :
17 x 100 : 85 = 20%
Đáp số : a ) 102 cm2
: b ) 20 %
Học tốt !!!
a,diện tích abc là
25x15=375(cm2)
b,tỉ số phần trăm là
15x20=300
=3%
đáp số a,375 b,3%
h nha
a: Xét ΔCAB có
E,M lần lượt là trung điểm của CA,CB
=>EM là đường trung bình của ΔCAB
=>EM//AB và \(EM=\dfrac{AB}{2}\)
\(EM=\dfrac{AB}{2}=\dfrac{4}{2}=2\left(cm\right)\)
b: Xét tứ giác ABDE có
DE//AB
BD//AE
Do đó: ABDE là hình bình hành
Hình bình hành ABDE có \(AB=AE\left(=\dfrac{AC}{2}\right)\)
nên ABDE là hình thoi
Hình thoi ABDE có \(\widehat{BAE}=90^0\)
nên ABDE là hình vuông
=>\(S_{ABDE}=AB^2=4^2=16\left(cm^2\right)\)
c: BAED là hình vuông
=>BD//AE và BD=AE
BD//AE
E\(\in\)AC
Do đó: BD//CE
BD=AE
AE=CE
Do đó: BD=CE
Xét tứ giác BDCE có
BD//CE
BD=CE
Do đó: BDCE là hình bình hành
=>BE=CD
ABDE là hình vuông
=>AD cắt BE tại trung điểm của mỗi đường
=>I là trung điểm chung của AD và BE
=>\(BI=\dfrac{1}{2}BE\)
Xét ΔABC có
AM,BE là đường trung tuyến
AM cắt BE tại K
Do đó: K là trọng tâm của ΔABC
=>\(BK=\dfrac{2}{3}BE\)
\(\dfrac{BI}{BK}=\dfrac{\dfrac{1}{2}BE}{\dfrac{2}{3}BE}=\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\)
=>\(BI=\dfrac{3}{4}BK\)
BI+IK=BK
=>\(\dfrac{3}{4}BK+IK=BK\)
=>\(IK=\dfrac{1}{4}BK=\dfrac{1}{4}\cdot\dfrac{2}{3}\cdot BE=\dfrac{1}{6}BE\)
mà BE=CD
nên \(IK=\dfrac{1}{6}CD\)
=>CD=6IK
a) Xét tứ giác AMBE có
D là trung điểm của đường chéo AB(gt)
D là trung điểm của đường chéo ME(M và E đối xứng nhau qua D)Do đó: AMBE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: AMBE là hình bình hành(cmt)
nên AM//BE và AM=BE(Hai cạnh đối của hình bình hành AMBE)
mà \(C\in EB\) và EB=EC(E là trung điểm của BC)
nên AM//CE và AM=CE
Xét tứ giác AMEC có
AM//CE(cmt)
AM=CE(cmt)
Do đó: AMEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: ΔABC cân tại A(gt)
mà AE là đường trung tuyến ứng với cạnh đáy BC(E là trung điểm của BC)
nên AE là đường cao ứng với cạnh BC(Định lí tam giác cân)
⇔AE⊥BC
hay \(\widehat{AEB}=90^0\)
Xét hình bình hành AMBE có \(\widehat{AEB}=90^0\)(cmt)
nên AMBE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Ta có: E là trung điểm của BC(gt)
nên \(BE=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Ta có: ΔABE vuông tại E(\(\widehat{AEB}=90^0\))
nên \(S_{ABE}=\dfrac{AE\cdot EB}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)