- T = ( \(\sqrt{x}\)- \(\frac{1}{\sqrt{x}}\)) ( \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\frac{\sqrt{x}-1}{\sqrt{x}+1}\))
- a) Rút gọn T
- b) Tìm x để T = 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(T=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\sqrt{x}^3-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\)\(\frac{\sqrt{x}^3+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x+1}{\sqrt{x}}\)
\(=\frac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
\(T=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\left(\frac{\sqrt{x}+1}{\sqrt{x-1}}+\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(\Rightarrow T=\frac{x-1}{\sqrt{x}}\left(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x-1}\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x+1}\right)}\right)\)
\(\Rightarrow T=\frac{x-1}{\sqrt{x}}.\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1}{x-1}\)
\(\Rightarrow T=\frac{x-1}{\sqrt{x}}.\frac{2x+2}{x-1}\)
\(\Rightarrow T=\frac{2x+2}{\sqrt{x}}\)
\(T=8\Leftrightarrow\frac{2x+2}{\sqrt{x}}=8\)
\(\Leftrightarrow x+1=4\sqrt{x}\)
\(\Leftrightarrow x^2+2x+1=8x\)
\(\Leftrightarrow x^2-6x+1=0\)
\(\Delta=\left(-6\right)^2-4.1.1=36-4=32,\sqrt{\Delta}=\sqrt{32}\)
Vậy pt có 2 nghiệm phân biệt x1; x2
\(x_1=\frac{6+\sqrt{32}}{2}=3+\sqrt{8}\);\(x_2=\frac{6-\sqrt{32}}{2}=3-\sqrt{8}\)