K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(1+7+7^2+...+7^{99}=\left(1+7\right)+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{98}\left(1+7\right)\)

                                                \(=\left(1+7\right)\left(1+7^2+...+7^{98}\right)=8\left(1+7^2+...+7^{98}\right)⋮8\left(đpcm\right)\)

27 tháng 7 2019

Ta có : \(1+7+7^2+7^3+...+7^{99}\)

    \(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{98}+7^{99}\right)\)

    \(=\left(1+7\right)+7^2.\left(1+7\right)+...+7^{98}.\left(1+7\right)\)

    \(=8+7^2.8+....+7^{98}.8\)

    \(=8.\left(1+7^2+...+7^{98}\right)⋮8\)

\(\Rightarrow1+7+7^2+7^3+...+7^{99}⋮8\left(đpcm\right)\)

23 tháng 11 2016

A = 7+7+ 73 +....+ 7100

    = (7+72) + (7+ 74)+.....+(799+7100)

     = 7(1+7) + 73(1+7)+.......+799(1+7)

    = 8(7+72+73+.....+ 799) chia hết cho 8  

30 tháng 11 2016

A = 7 + 72 + 73 + ... + 799 + 7100

A = ( 7 + 72 ) + ( 73 + 74 ) + ... + ( 799 + 7100 )

A = ( 1 + 7 ) . 7 + ( 1 + 7 ) . 73 + ... + ( 1 + 7 ) . 799

A = 8 . 7 + 8 . 73 + ... + 8 . 799

A = 8 . ( 7 + 73 + ... + 799 )

=> A chia hết cho 8 (đpcm)

8 tháng 11 2019

phải là :

A= \(7+7^2+7^3+...+7^{99}+7^{100}\)

\(=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{99}+7^{100}\right)\)

\(=7.\left(1+7\right)+7^3.\left(1+7\right)+...+7^{99}.\left(1+7\right)\)

\(=7.8+7^3.8+...+7^{99}.8\\ =8.\left(7+7^3+7^{99}\right)\\ \Rightarrow A⋮8\)

Vậy \(A⋮8\)

8 tháng 11 2019

Thanks bạn nha, mk ghi lộn đề

23 tháng 11 2016

Có \(A=7^1+7^2+7^3+...+7^{99}+7^{100}=\left(7^1+7^2\right)+\left(7^3+7^4\right)+...\left(7^{99}+7^{100}\right)\)

\(\Leftrightarrow A=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{99}\left(1+7\right)=7.8+7^3.8+...+7^{99}.8=8\left(7+7^3+...+7^{99}\right)\)

Vì \(8\left(7+7^3+...+7^{99}\right)\)chia hết cho 8 nên \(A\)chia hết cho 8 (ĐPCM)

  __cho_mình_nha_chúc_bạn_học _giỏi__ 

29 tháng 12 2017

1. 5x+27 là bội của x+1 

=> 5x+27 chia hết cho x+1 

=> 5(x+1)+22 chia hết cho x+1 

Mà 5(x+1) chia hết cho x+1

=> 22 chia hết cho x+1 

=> x+1 thuộc Ư(22) 

Tiếp theo bạn tự làm nhé

27 tháng 4 2017

Tổng các số hạng của S là 99 số hạng.

a/ Nhóm 3 số hạng liên tiếp với nhau, ta được 33 nhóm như sau:

S=(2+22+23)+....+(297+298+299)=2(1+2+22)+24(1+2+22)+...+297(1+2+22)

=> S=2.7+24.7+...+297.7=7(2+24+297)

=> S chia hết cho 7

b/ 

27 tháng 4 2017

S=1-1+2+22+23+...+299=(1+2+22+23+...+299)-1

Tổng các số hạng trong ngoặc là 100 số hạng. Nhóm 5 số hạng liên tiếp với nhau ta được:

S=(1+2+22+23+24)+25(1+2+22+23+24)+...+295(1+2+22+23+24)-1

S=31.(1+25+...+295)-1

=> S+1=31.(1+25+...+295) => S+1 chia hết cho 31

=> S không chia hết cho 31

7 tháng 1 2019

\(D=\left(7^1+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

\(\Rightarrow D=7^1.\left(1+7+7^2+7^3\right)+7^5.\left(1+7+7^2+7^3\right)+...+7^{4n-3}.\left(1+7+7^2+7^3\right)\)

\(\Rightarrow D=7^1.400+7^5.400+...+7^{4n-3}.400=400.\left(7^1+7^5+...+7^{4n-3}\right)\)

Vậy D chia hết cho 400

27 tháng 11 2015

7A=7+7^2+7^3+....+7^32

=(7+7^2+7^3+7^4)+....+(7^29+7^30+7^31+7^32)

=(7+7^2+7^3+7^4)+.....+7^28x(7+7^2+7^3+7^4)

=2800+......+7^28x2800

=2800x(1+7^4+....+7^28)chia hết cho 25(vì 2800 chia hết cho 25)