K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tìm GTNN

A= 4x^2 - 12x + 16

Giải hệ phuong trình trên máy tính lặp 3 dấu =

KQ : Amin = \(\frac{3}{2}\)

B= 9x^2 + 30x + 59

 Giải hệ phuong trình trên máy tính lặp 3 dấu =

KQ : Bmin = \(-\frac{5}{3}\)

C= x^2 + 3x + 19

Giải hệ phuong trình trên máy tính lặp 3 dấu =

KQ : Cmin = \(-\frac{3}{2}\) 

D= 3x^2 - 3x +7

Giải hệ phuong trình trên máy tính lặp 3 dấu =

KQ : Dmin = \(\frac{1}{2}\)

27 tháng 7 2019

a) \(A=4x^2-12x+16\)

\(=\left(2x\right)^2-2.2x.3+9+7\)

\(=\left(2x-3\right)^2+7\)

Vì \(\left(2x-3\right)^2\ge0;\forall x\)

\(\Rightarrow\left(2x-3\right)^2+7\ge0+7;\forall x\)

Hay \(A\ge7;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\)

                          \(\Leftrightarrow x=\frac{3}{2}\)

Vậy MIN A=7 \(\Leftrightarrow x=\frac{3}{2}\)

Các phần khác tương tự

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

a)

\(3x^2+12x-66=0\)

\(\Leftrightarrow x^2+4x-22=0\)

\(\Leftrightarrow x^2+4x+4=26\Leftrightarrow (x+2)^2=26\)

\(\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\)

b)

\(9x^2-30x+225=0\)

\(\Leftrightarrow (3x)^2-2.3x.5+25+200=0\)

\(\Leftrightarrow (3x-5)^2=-200< 0\) (vô lý nên pt vô nghiệm)

c)

\(x^2+3x-10=0\)

\(\Leftrightarrow x^2-2x+5x-10=0\)

\(\Leftrightarrow x(x-2)+5(x-2)=0\Leftrightarrow (x+5)(x-2)=0\)

\(\Rightarrow x=-5\) hoặc $x=2$

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

d)

$3x^2-7x+1=0$

$\Leftrightarrow 3(x^2-\frac{7}{3}x)+1=0$

$\Leftrightarrow 3(x^2-\frac{7}{3}x+\frac{7^2}{6^2})=\frac{37}{12}$

$\Leftrightarrow 3(x-\frac{7}{6})^2=\frac{37}{12}$
$\Leftrightarrow (x-\frac{7}{6})^2=\frac{37}{36}$

$\Rightarrow x-\frac{7}{6}=\frac{\pm \sqrt{37}}{6}$

$\Rightarrow x=\frac{7\pm \sqrt{37}}{6}$

e)

$3x^2+7x+2=0$

$\Leftrightarrow 3(x^2+\frac{7}{3}x+\frac{7^2}{6^2})=\frac{25}{12}$

$\Leftrightarrow 3(x+\frac{7}{6})^2=\frac{25}{12}$

$\Leftrightarrow (x+\frac{7}{6})^2=\frac{25}{36}$

$\Rightarrow x+\frac{7}{6}=\pm \frac{5}{6}$

$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 1:

$A=(9x^2-5x)+(5y^2+3y)$

$=[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]+5(y^2+\frac{3}{5}y+\frac{3^2}{10^2})-\frac{103}{90}$

$=(3x-\frac{5}{6})^2+5(y+\frac{3}{10})^2-\frac{103}{90}$

$\geq \frac{-103}{90}$

Vậy $A_{\min}=\frac{-103}{90}$. Giá trị này đạt tại $3x-\frac{5}{6}=y+\frac{3}{10}=0$

$\Leftrightarrow (x,y)=(\frac{5}{18}, \frac{-3}{10})$

 

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 2:

a. 

$-A=4x^2+5y^2-8xy-10y-12$

$=(4x^2-8xy+4y^2)+(y^2-10y+25)-37$

$=(2x-2y)^2+(y-5)^2-37\geq -37$

$\Rightarrow A\leq 37$

Vậy $A_{\max}=37$. Giá trị này đạt tại $2x-2y=y-5=0$

$\Leftrightarrow x=y=5$

b.

$-B=3x^2+16y^2+8xy+5x-2$

$=(x^2+16y^2+8xy)+2(x^2+\frac{5}{2}x+\frac{5^2}{4^2})-\frac{41}{8}$

$=(x+4y)^2+2(x+\frac{5}{4})^2-\frac{41}{8}$

$\geq \frac{-41}{8}$

$\Rightarrow B\leq \frac{41}{8}$
Vậy $B_{\max}=\frac{41}{8}$. Giá trị này đạt tại $x+4y=x+\frac{5}{4}=0$

$\Leftrightarrow x=\frac{-5}{4}; y=\frac{5}{16}$

20 tháng 6 2021

$ a/ 12x(x – 5) – 3x(4x - 10) = 120$

`<=>12x^2-60x-12x^2+30x=120`

`<=>-30x=120`

`<=>x=-4`

Vậy `x=-4`

$b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)$

`<=>9x^2+36x-15x^2-10x=112-6x^2-2x`

`<=>-6x^2+26x=112-6x^2-2x`

`<=>28x=112`

`<=>x=4`

Vậy `x=4`

$c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)$

`<=>3x-3x^2-15x^2-35x=154+45x-18x^2`

`<=>-32x-18x^2=154+45x-18x^2`

`<=>77x=-154`

`<=>x=-2`

Vậy `x=-2`

15 tháng 8 2017

giúp em thé các anh chi em trên thế giới

15 tháng 8 2020

\(A=9x^2-30x+7=\left(3x\right)^2-2.3x.5+25-25+7\)

\(A=\left(3x+5\right)^2\ge-18\forall x\in R\)

GTNN của A =-18 khi \(3x+5=0\Leftrightarrow x=-\frac{5}{3}\)

\(B=3x^2-12x+5=3\left(x^2-4x\right)+5\)

\(=3\left(x^2-4x+4\right)-3.4+5\)

\(=3\left(x-2\right)^2-7\ge-7\forall x\in R\)

GTNN của B = -7 khi \(x-2=0\Leftrightarrow x=2\)

\(C=4x^2+12x=\left(2x\right)^2+2.2x.3+3^2-9\)

\(=\left(2x+3\right)^2-9\ge-9\forall x\in R\)

GTNN của C = -9 khi \(2x+3=0\Leftrightarrow x=-\frac{3}{2}\)

12 tháng 7 2017

bằng mấy cũng được

NV
22 tháng 7 2021

a.

ĐKXĐ: \(x\ge-\dfrac{5}{3}\)

\(9x^2-3x-\left(3x+5\right)-\sqrt{3x+5}=0\)

Đặt \(\sqrt{3x+5}=t\ge0\)

\(\Rightarrow9x^2-3x-t^2-t=0\)

\(\Delta=9+36\left(t^2+t\right)=\left(6t+3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+6t+3}{18}=\dfrac{t+1}{3}\\x=\dfrac{3-6t-3}{18}=-\dfrac{t}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=3x-1\\t=-3x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+5}=3x-1\left(x\ge\dfrac{1}{3}\right)\\\sqrt{3x+5}=-3x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+5=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\\3x+5=9x^2\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
22 tháng 7 2021

c.

ĐKXĐ: \(x\ge-5\)

\(x^2-3x+2-x-5-\sqrt{x+5}=0\)

Đặt \(\sqrt{x+5}=t\ge0\)

\(\Rightarrow-t^2-t+x^2-3x+2=0\)

\(\Delta=1+4\left(x^2-3x+2\right)=\left(2x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+2x-3}{-2}=1-x\\t=\dfrac{1-2x+3}{-2}=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1-x\left(x\le1\right)\\\sqrt{x+5}=x-2\left(x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2-2x+1\left(x\le1\right)\\x+5=x^2-4x+4\left(x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)