(2\(\sqrt{3}\)+ \(\sqrt{5}\)) \(\sqrt{3}\)- \(\sqrt{60}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2\sqrt{3}-\sqrt{2}\right)^2+2\sqrt{24}=\left[\left(2\sqrt{3}\right)^2-2.2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2\right]+2\sqrt{24}\\ =\left[12-4\sqrt{6}+2\right]+2\sqrt{24}=14-4\sqrt{6}+4\sqrt{6}=14\\ b,\left(3\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+2\sqrt{3}\right)-\sqrt{60}=3\sqrt{5}.\sqrt{5}-2\sqrt{3}.\sqrt{3}+3\sqrt{5}.2\sqrt{3}-\sqrt{3}.\sqrt{5}-\sqrt{60}\\ =15-6+6\sqrt{15}-\sqrt{15}-\sqrt{2^2.15}\\ =9+3\sqrt{15}\)
`a, (2 sqrt 3 + sqrt 5)sqrt 3 - sqrt 60`
`= 2 sqrt 3 . sqrt 3 + sqrt 5 . sqrt 3 - sqrt(4 . 15)`
`= 2 . 3 + sqrt 15 - 2 sqrt 15`.
`= 6 - sqrt 15`.
`b, (5 sqrt 2 + 2 sqrt 5)sqrt 5 - sqrt250`
`= 5 sqrt 2 . sqrt 5 + 2 sqrt 5 . sqrt 5 - sqrt(25.10)`
`= 5 sqrt 10 + 10 - 5 sqrt 10`
`= 10`.
5) \(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\)
\(=2\sqrt{3}\cdot\sqrt{3}+\sqrt{5}\cdot\sqrt{3}-\sqrt{2^2\cdot15}\)
\(=2\cdot3+\sqrt{15}-2\sqrt{15}\)
\(=6+\left(1-2\right)\sqrt{15}\)
\(=6-\sqrt{15}\)
6) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(=5\sqrt{2}\cdot\sqrt{5}+2\sqrt{5}\cdot\sqrt{5}-\sqrt{5^2\cdot10}\)
\(=5\sqrt{10}+2\cdot5-5\sqrt{10}\)
\(=\left(5-5\right)\sqrt{10}+10\)
\(=0+10\)
\(=10\)
\(A=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}=\sqrt{1}=1\)
\(A=\sqrt[3]{8-\sqrt{60}}+\sqrt[3]{8+\sqrt{60}}\) xem lại đề con này
\(A=\frac{2\sqrt{3+\sqrt{5-\left(2\sqrt{3}+1\right)}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{4+2\sqrt{3}}}{2\left(\sqrt{3}+1\right)}=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)
1.
ĐKXĐ: \(x< 5\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=2\)
\(\left(2\sqrt{3}+\sqrt{5}\right)\cdot\sqrt{3}-\sqrt{60}\)
\(=2\sqrt{3}\cdot\sqrt{3}+\sqrt{3}\cdot\sqrt{5}-\sqrt{2^2\cdot15}\)
\(=2\cdot3+\sqrt{15}-2\sqrt{15}\)
\(=6+\left(1-2\right)\sqrt{15}\)
\(=6-\sqrt{15}\)
\(10+\sqrt{60}+\sqrt{24}+\sqrt{40}=10+2\sqrt{15}+2\sqrt{6}+2\sqrt{10}\)
\(=\left(5+2\sqrt{15}+3\right)+2+2\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{3}\right)^2+2\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)+2\)
\(=\left(\sqrt{5}+\sqrt{3}+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{10+\sqrt{60}+\sqrt{24}+\sqrt{40}}=\sqrt{5}+\sqrt{3}+\sqrt{2}\)
Dùng hẳng đẳng thức 3 số:
$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$
$VT=\sqrt{5+3+2+2\sqrt{15}+2\sqrt{6}+2\sqrt{10}}=\sqrt{(\sqrt5+\sqrt3+\sqrt2)^2}=VP(đpcm)$
2\(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
= \(14-\sqrt{84}+7-\sqrt{84}\)
= 21
\(\left(2\sqrt{3}+\sqrt{5}\right).\sqrt{3}-\sqrt{60}\)
\(=\sqrt{3}.\left(2+\sqrt{3}+\sqrt{5}\right)-2\sqrt{15}\)
\(=2\sqrt{3}+3+\sqrt{15}-2\sqrt{15}\)
\(=2\sqrt{3}+3-\sqrt{15}\)
Lê Trung Hiếu
sai r ạ :v như v ms đúng ạ
\(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\)
\(=2\sqrt{3}\cdot\sqrt{3}+\sqrt{5}\cdot\sqrt{3}-\sqrt{60}\)
\(=2\cdot3+\sqrt{15}-\sqrt{60}\)
\(=6+\sqrt{15}-2\sqrt{15}\)
\(=6-\sqrt{15}\)