tìm GTLN:
B = 4x - x^2 + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì (2x+1/2)4>= 0
=> (2x+1/2)4-1>= -1
=> Min A =-1 <=> x = -1/4
b, vì -(4/9x-2/15)6<= 0
=> 3-(4/9x-2/15)6<= 3
=> Max B = 3 <=> x=3/10
\(B=\frac{x^2+y^2+3}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}\le1+\frac{1}{0+0+2}=\frac{3}{2}\)
Max B =3/2 khi x =y =0
\(4x\left(3-\dfrac{1}{4}x\right)+\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow12x-x^2+x^2-4=0\Rightarrow12x=4\Rightarrow x=\dfrac{1}{3}\)
\(12x-x^2+x^2-2^2=0\)
\(12x-2=0\)
\(12x=2\)
\(x=\dfrac{1}{6}\)
Vậy x=1/6
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
ĐKXĐ: \(x>\dfrac{1}{4}\)
Đặt \(\dfrac{x}{\sqrt{4x-1}}=t>0\)
\(\Rightarrow t+\dfrac{1}{t}=2\Rightarrow t^2-2t+1=0\)
\(\Rightarrow t=1\Rightarrow x=\sqrt{4x-1}\)
\(\Rightarrow x^2-4x+1=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)
Anh đang trên xe đi chơi nên xin phép gõ không latex
--
(2x+1)^2 - 4x^2 + 4x -1 =0
<=> (2x+1)^2 - (2x-1)^2=0
<=> (2x + 1 + 2x -1). (2x+1 - 2x +1)=0
<=> 4x. 2= 0
<=> 8x=0
<=> x =0
`@` `\text {Ans}`
`\downarrow`
`(2x + 1)^2 - 4x^2 + 4x - 1 = 0`
`<=> 4x^2 + 4x + 1 - 4x^2 + 4x - 1 = 0`
`<=> (4x^2 - 4x^2) + (4x + 4x) + (1 - 1) = 0`
`<=> 8x = 0`
`<=> x = 0`
Vậy, `x = 0.`
=> B=-( x2 - 4x -1) = -( x2 -4x + 4 -5)= -( x-2)2 +5
có: (x -2)2 lờn hơn hoặc bằng 0 với mọi x
=> -(x-2)2 nhỏ hơn hoặc bằng 0 với mọi x
=> -(x-2)2 +5 nhỏ hơn hoặc bằng 5 với mọi x
=> GTLN là 5 khi x= 2