Cho biểu thức
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
1) Rút gọn P
2) Tính giá trị của P biết x = \(4-2\sqrt{3}\)
3) Tìm x để P < -1/2
Các bạn giải gấp cho mình nha . Mình đang cần rất gấp bạn nào giải đúng mình tick cho
1) ĐKXĐ: \(x\ge0;x\ne9\)
\(P=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\\ =\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\\ =\frac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\frac{1}{\sqrt{x}+1}\\ =\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\frac{-3}{\sqrt{x}+3}\)
2) Ta thấy \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\) (bạn tự biến đổi x cụ thể ra nhé, mà x hoàn toàn thỏa mãn ĐK) nên \(\sqrt{x}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\).
Từ đây, thay \(\sqrt{x}=\sqrt{3}-1\) vào P, ta được:
\(P=\frac{-3}{\sqrt{3}-1+3}=\frac{-3}{\sqrt{3}+2}\)
3) Để \(P< \frac{-1}{2}\) thì:
\(\frac{-3}{\sqrt{x}+3}< \frac{-1}{2}=\frac{1}{-2}\\ \Leftrightarrow\sqrt{x}+3>6\\ \Leftrightarrow\sqrt{x}>3\\ \Leftrightarrow x>9\left(t/m\right)\)
Chúc bạn học tốt nha.
1.\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
= \(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
= \(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
= \(\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
= \(\frac{-3}{\sqrt{x}+3}\)
2. x = 4 - \(2\sqrt{3}\)
= \(\left(\sqrt{3}-1\right)^2\)
=> \(\sqrt{x}=\sqrt{3}-1\)
Thay vào P, ta có:
P = \(\frac{-3}{\sqrt{3}+2}\)
3. Để P < -1/2
=> \(\frac{-3}{\sqrt{x}+3}< \frac{-1}{2}\)
<=> \(\frac{3}{\sqrt{x}+3}>\frac{1}{2}\)
<=> \(\sqrt{x}+3< 6\)
<=> \(\sqrt{x}< 3\)
<=> x < 9
Mà x \(\ge0\)
=> \(0\le x< 9\) thì P < - 1/2