cho góc nhọn xOy.trên Ox lấy điểmA,trên Oy lấy điểm B,sao cho OA=OB.từ Aker đường thẳng vuông góc với Ox cắt Oy ở E, từ B kẻ đường thẳng vuông góc với Oy cắt Ox ở F.AE và BF cắt nhau ở I.
CMR:a) AE=BF
b)ΔAFI=ΔBEI
c)OI là tia phân giác của AOB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AOE và tam giác BOF có :
OA = OB (gt)
\(\widehat{A}=\widehat{B}=90^0\)
\(\widehat{O}\)là góc chung
suy ra : tam giác AOE = tam giác BOF
suy ra : AE = BF ( cạnh tương ứng )
Hình tự vẽ nha
a)Xét tam giác AEO vuông tại A và tam giác BFO vuông tại B có :
-\(\widehat{O}\)là góc chung
-OA=OB ( GT )
=> Tam giác AEO = Tam giác BFO ( cạnh góc vuông và góc nhọn kề )
=>AE=BF ( tương ứng )
b)Vì tam giác AEO = tam giác BFO ( CM trên )
=>OF=OE ( tương ứng )
\(\widehat{ÒFB}=\widehat{OEA}\)( tương ứng )
Ta có : OB+BE=OE
OA+AF=OF
mà OF=OE ; OA=OA
=>AF=BE
Xét tam giác AFI vuông tại A và tam giác BEI vuông tại B ta có :
BE=AF ( CM trên )
\(\widehat{ÒFB}=\widehat{OEA}\)( CM trên )
=> Tam giác AFI = tam giác BEI ( cạnh góc vuông và góc nhọn kề )
c) Vì tam giác AFI = tam giác BEI ( CM trên )
=>BI=AI ( tương ứng )
Xét tam giác AOI và tam giác BOI có
OA=OB (GT)
OI là cạnh chung
BI=AI ( CM trên )
=> tam giác AOI = tam giác BOI (c.c.c)
=>\(\widehat{AOI}=\widehat{BOI}\)( tương ứng )
=> OI là tia phân giác của \(\widehat{AOB}\)
Ta có hình vẽ:
a/ Xét tam giác OAE và tam giác OBF có:
OA = OB (GT)
O: góc chung
\(\widehat{A}\)=\(\widehat{B}\)=900 (GT)
=> tam giác OAE = tam giác OBF (g.c.g)
=> AE = BF (2 góc tương ứng)
b/ Ta có: \(\widehat{E}\)=\(\widehat{F}\) (vì tam giác OAE = tam giác OBF)(1)
Ta có: \(\widehat{OAI}\)=\(\widehat{OBI}\)(GT) (*)
Mà \(\widehat{OAI}\)+\(\widehat{IAF}\)=1800 (kề bù) (**)
và \(\widehat{OBI}\)+\(\widehat{IBE}\)=1800 (kề bù) (***)
Từ (*),(**),(***) => \(\widehat{IAF}\)=\(\widehat{IBE}\) (2)
Ta có: AF = BE (3)
Từ (1),(2),(3) => tam giác AFI = tam giác BEI (g.c.g)
c/ Xét tam giác AIO và tam giác BIO có:
OI: cạnh chung
OA = OB (GT)
AI = BI (vì tam giác AFI = tam giác BEI)
=> tam giác AIO = tam giác BIO (c.c.c)
=> \(\widehat{AOI}\)=\(\widehat{BOI}\) (2 góc tương ứng)
=> OI là phân giác \(\widehat{AOB}\) (đpcm)
Tham khảo https://olm.vn/hoi-dap/detail/67902668305.html?pos=118338890512
Các cậu ơi, mình cần câu trả lời cụ thể chi tiết nhé, nếu mà các cậu đưa đường link vào là mình báo cáo sai phạm nhé
a: Xét ΔOAE vuông tại A và ΔOBF vuông tại B có
OA=OB
\(\widehat{BOF}\) chung
Do đó: ΔOAE=ΔOBF
Suy ra: AE=BF
a: Xét ΔOBF vuông tại B và ΔOAE vuông tại A có
OB=OA
\(\widehat{BOF}\) chung
Do đó: ΔOBF=ΔOAE
Suy ra: BF=AE
b: Ta có: ΔOBF=ΔOAE
nên \(\widehat{OFB}=\widehat{OEA}\)
hay \(\widehat{AFI}=\widehat{BEI}\)
Bạn tham khảo tại đây nhé: Câu hỏi của Nguyễn Hải Băng.
Chúc bạn học tốt!