tìm nghiệm : x(x-1)+1
chỉ mình cách làm và cách tik đúng với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(x\ge\frac{-1}{2}\)
Ta có : \(\sqrt{2x+1}+x^2-3x+1=0\)
\(\Leftrightarrow2\sqrt{2x+1}+2x^2-6x+2=0\)
\(\Leftrightarrow-\left(2x+1\right)+2\sqrt{2x+1}-1+2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow2\left(x-1\right)^2-\left(\sqrt{2x+1}-1\right)^2=0\)
\(\Leftrightarrow\left[\sqrt{2}\left(x-1\right)-\sqrt{2x+1}+1\right].\left[\sqrt{2}\left(x-1\right)+\sqrt{2x+1}-1\right]=0\)
Tới đây bạn tự làm nhé!
ĐKXĐ: \(x\ge-\frac{1}{2}\)
\(\sqrt{2x+1}+x^2-3x+1=0\)
\(\Rightarrow\sqrt{2x+1}=-x^2+3x-1\)
\(\Rightarrow2x+1=x^4-6x^3+11x^2-6x+1\)
\(\Rightarrow x^4-6x^3+11x^2-8x=0\)
\(\Rightarrow x\left(x^3-6x^2+11x-8\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^3-6x^2+11x-8=0\left(1\right)\end{cases}}\)
(1) => bấm máy ta nhận đc 1 nghiệm như mà lẻ quá
Vậy có 2 nghiệm
\(\sqrt{2x+1}=t\ge0\)\(\Rightarrow x=\frac{t^2-1}{2}\)
thay vài phương trình đã cho và phân tích nhân tử, ta được:
\(pt\rightarrow\left(t+1\right)\left(t^3-t^2-7t+11\right)=0\)
\(\Leftrightarrow t^3-t^2-7t+11=0\text{ (1)}\)\(do\text{ }t+1>0\)
Bấm máy tính thấy phương trình này chỉ có 1 nghiệm âm, do đó ta chứng minh phương trình này ko có nghiệm dương
\(\left(1\right)\Leftrightarrow t\left(t^2-4t+4\right)+3t^2-11t+11=0\)
\(\Leftrightarrow t\left(t-2\right)^2+3\left(t-\frac{11}{6}\right)^2+\frac{11}{12}=0\)
Thấy ngay phương trình này có VT > 0 nên vô nghiệm.
Vậy phương trình đã cho VÔ NGHIỆM.
\(pt\Leftrightarrow\left(x^3+2\sqrt{2}\right)+2x^2+2\sqrt{2}x=0\)
\(\Leftrightarrow\left(x+\sqrt{2}\right)\left(x^2-\sqrt{2}x+2\right)+2x\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{2}\right)\left[x^2+\left(2-\sqrt{2}\right)x+2\right]=0\)
\(\Leftrightarrow x=-\sqrt{2}\)
cậu thử đặt kết quả bằng 0 rồi xét 2 trường hợp xem
\(x\left(x-1\right)+1\)
\(=x^2-x+1\)
\(=\left(x^2\cdot\frac{1}{2}\cdot2\cdot x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) nên vô nghiệm