cho P =\(\frac{1}{x+5}\)
tính giá trị của Q=9x\(^2\) - 42x +49 biết P= -3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\) ĐK đề bài
\(=\frac{x-5+2\left(x+5\right)-2x-10}{\left(x+5\right)\left(x-5\right)}=\frac{-\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}=-\frac{1}{x-5}\)
b/ có A=-3 => \(-\frac{1}{x-5}=-3 \Rightarrow x-5=\frac{1}{3}\Rightarrow x=\frac{16}{3}\)
có \(9x^2-42x+49=\left(3x-7\right)^2=\left(\frac{3.16}{3}-7\right)^2=81\)
\(9x^2+42x+49=\left(3x+7\right)^2\)
Thay x=1 ta có
\(\left(3.1+7\right)^2=10^2=100\)
\(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a+2b^2\right)^2\)
Thay a=2;b=-1 ta có
\(\left(\frac{1}{2}.2+2\left(-1\right)^2\right)^2=\left(1+2\right)^2=3^2=9\)
\(\(9x^2+42x+49\)\)tại x = 1
Ta có:\(\(9x^2+42x+49=\left(3x\right)^2+2.3x.7+7^2=\left(3x+7\right)^2\)\)
Thay x = 1 vào \(\(\left(3x+7\right)^2\)\)ta được:
\(\(\left(3.1+7\right)^2=10^2=100\)\)
\(\(\frac{1}{4}a^2+2ab^2+4b^4\)\)tại a = 2 ; b = -1
Ta có: \(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a\right)^2+2.\frac{1}{2}a.2b^2+\left(2b\right)^2=\left(\frac{1}{2}a+2b^2\right)^2\)
Thay a = 2 ; b = -1 vào\(\left(\frac{1}{2}a+2b^2\right)^2\)ta được:
\(\(\left(\frac{1}{2}.2+2.\left(-1\right)^2\right)^2=\left(3\right)^2=9\)\)
\(4x^2-28x+49=\left(2x\right)^2-2\cdot2x\cdot7+7^2=\left(2x-7\right)^2\)
thay x=4 vào ta được \(\left(2\cdot4-7\right)^2=\left(8-7\right)^2=1^2=1\)
vậy \(4x^2-28x+49=1\)khi x=4
\(9x^2+42x+49=\left(3x\right)^2+2\cdot3x\cdot7+7^2=\left(3x+7\right)^2\)
thay x=1 và ta được \(\left(3\cdot1+7\right)^2=10^2=100\)
vậy \(9x^2+42x+49=100\)đạt được khi x=1
\(25x^2-2xy+\frac{1}{25y^2}=\left(5x\right)^2-2\cdot5x\cdot\frac{1}{5y}+\left(\frac{1}{5y}\right)^2=\left(5x-\frac{1}{5y}\right)^2\)
thay x=\(\frac{-1}{5}\)và y=-5 vào ta được \(\left[5\cdot\left(\frac{-1}{5}\right)-\frac{1}{5\cdot\left(-5\right)}\right]^2=\left(1-\frac{1}{-25}\right)^2=\left(\frac{26}{25}\right)^2=...\)
vậy \(25x^2-2xy+\frac{1}{25y^2}=\left(\frac{26}{25}\right)^2\)khi x=\(\frac{-1}{5}\)và y=-5
4x2 - 28x + 49 = ( 2x )2 - 2.2x.7 + 72 = ( 2x - 7 )2
Thế x = 4 ta được : ( 2 . 4 - 7 )2 = 12 = 1
9x2 + 42x + 49 = ( 3x )2 + 2.3x.7 + 72 = ( 3x + 7 )2
Thế x = 1 ta được : ( 3.1 + 7 )2 = 102 = 100
25x2 - 2xy + 1/25y2 = ( 5x )2 - 2.5x.1/5y + ( 1/5y )2 = ( 5x - 1/5y )2
Thế x = -1/5 , y = -5 ta được : \(\left[5\cdot\left(-\frac{1}{5}\right)-\frac{1}{5}\cdot\left(-5\right)\right]^2=\left[-1+1\right]^2=0\)
a) \(\left|x\right|=2\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
+) TH1: \(x=2\)
\(A=\left(3\cdot2+5\right)\left(2\cdot2-1\right)+\left(4\cdot2-1\right)\left(3\cdot2+2\right)\)
\(A=89\)
+) TH2: \(x=-2\)
\(A=\left(-2\cdot3+5\right)\left(-2\cdot2-1\right)+\left(-2\cdot4-1\right)\left(-2\cdot3+2\right)\)
\(A=-27\)
Vậy...
b) \(B=9x^2+42x+49\)
\(B=\left(3x+7\right)^2\)
\(B=\left(3\cdot1+7\right)^2\)
\(B=100\)
Vậy...
a) \(A=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
\(A=\dfrac{x-5+2x+10-2x-10}{\left(x+5\right)\left(x-5\right)}=\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}=\dfrac{1}{x+5}\)
b) \(A=-3\Rightarrow\dfrac{1}{x+5}=-3\)
\(\Leftrightarrow x+5=-\dfrac{1}{3}\Leftrightarrow x=-\dfrac{1}{3}-5=\dfrac{-16}{3}\)
\(9x^2-42x+49=\left(3x-7\right)^2=\left(3.\dfrac{-16}{3}-7\right)^2=\left(-23\right)^2=529\) \(\left(x=\dfrac{-16}{3}\right)\)
a ) Rút gọn : \(A=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
\(\Leftrightarrow A=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}\)
\(\Leftrightarrow A=\dfrac{1}{x+5}+\dfrac{2}{x-5}-\dfrac{2}{x-5}\)
\(\Leftrightarrow A=\dfrac{1}{x+5}.\)
Khi \(A=-3\),thì :
\(\dfrac{1}{x+5}=-3\Leftrightarrow x=-\dfrac{16}{3}\)
Ta có : \(9x^2-42x+49\)
\(=\left(3x\right)^2-2.3x.7+49\)
\(=\left(3x-7\right)^2\)
Thay \(x=-\dfrac{16}{3},\) ta có :
\(\left(3.\dfrac{-16}{3}-7\right)^2=\left(-16-7\right)^2=\left(-23\right)^2=529\)
Ta có: \(P=\frac{1}{x+5}=-3\)
\(\Rightarrow x+5=\frac{-1}{3}\Rightarrow x=\frac{-16}{3}\)
Ta lại có:\(Q=9x^2-42x+49=\left(3x-7\right)^2\)
\(=\left(3.\frac{-16}{3}-7\right)^2=529\)
Vậy......
Ta có: P = -3
=> \(\frac{1}{x+5}=-3\)
=> \(-3\left(x+5\right)=1\)
=> -3x - 15 = 1
=> -3x = 1 + 15
=> -3x = 16
=> x = 16 : (-3) = -16/3
Với x = -16/3 thay vào Q, ta được:
Q = 9.(-16/3)2 - 42.(-16/3) + 49
Q = 9. 256/9 + 224 + 49
Q = 256 + 224 + 49
Q = 529
Vậy ...