Chứng minh rằng
a)35+34+33 chia hết cho 13
b)210-29+28-27 chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
a)abc chia hết 27
=>abc chia hết 3 và 9
mà abc chia hết 9 thì 100% chia hết 3
mà abc chia hết 9=>(a+b+c) chia hết 9
=>(b+c+a=a+b+c) chia hết 9 => bca chia hết 3
=>bca chia hết 27
a ) vì abc chia hết cho 27
=> bca chia hết cho 27 ( hiển nhiên đúng )
1. a) a + 5b
ta có: a - b = (a + 5b) - 6b
do a - b chia hết cho 6
=> 6b cũng chia hết cho 6
=> a + 5b phải chia hết cho 6 (đccm)
b) a + 17b
ta có: a - b = (a + 17b) - 18b
do a - b chia hết cho 6
=> 18b cũng chia hết cho 6
=> a + 17b phải chia hết cho 6 (đccm)
c) a - 13b
ta có: (a - b) - 12b = a - 13b
do a - b chia hết cho 6
=> 12b cũng chia hết cho 6
=> a - 13b phải chia hết cho 6 (đccm)
ok mk nhé!!!! 456456575675785685787687696356235624534645645775685786787645745
2, tìm n€z biết n-1 là ước của 12
=> n = 13 ; 7 ; 5 ; 4
3, tìm n€z biết n-4 chia hết cho n-1
n = .... ko có số nào phù hợp
Bạn tham khảo tại đây:
Câu hỏi của Bách Hoàng - Toán lớp 6 - Học toán với OnlineMath
a chia hết cho b => a=k.b, k thuộc Z
b chia hết cho c => b=m.c, m thuộc Z
Suy ra: a=k.b=k.m.c chia hết cho c
vì |a| =a và |b| cũng bằng b mà a = b
suy ra |a| cũng chia hết cho |b|
a) \(3^5+3^4+3^3\)
\(=3^3\cdot3^2+3^3\cdot3+3^3\cdot1\)
\(=3^3\left(3^2+3+1\right)\)
\(=3^3\cdot13⋮13\) (đpcm)
b) \(2^{10}-2^9+2^8-2^7\)
\(=2^7\cdot2^3-2^7\cdot2^2+2^7\cdot2-2^7\cdot1\)
\(=2^7\left(2^3-2^2+2-1\right)\)
\(=2^7\cdot5⋮5\) (đpcm)
=))