K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2022

a: Xet ΔABC có AI/AB=AK/AC

nên IK//BC

=>BIKC là hình thang

mà góc B=góc C

nên BIKC là hình thang cân

b: Xét ΔBAC có BH/BC=BI/BA

nên HI//AC và HI=AC/2

=>HI//AK và HI=AK

=>AIHK là hình bình hành

mà AI=AK

nên AIHK là hình thoi

16 tháng 12 2022

Lí do AI=AK ạ?

a: Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh đáy BC

nên H là trung điểm của BC

Xét ΔABC có 

I là trung điểm của AB

H là trung điểm của BC

Do đó: IH là đường trung bình của ΔBAC

Suy ra: IH//AC và \(IH=\dfrac{AC}{2}\)

mà K∈AC và \(AK=\dfrac{AC}{2}\)

nên IH//AK và IH=AK

Xét tứ giác AIHK có 

HI//AK

HI=AK

Do đó: AIHK là hình bình hành

b: Xét ΔBAC có

I là trung điểm của AB

K là trung điểm của AC

Do đó: IK là đường trung bình của ΔBAC

Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\)

mà \(BH=HC=\dfrac{BC}{2}\)

nên IK=BH=HC

Xét tứ giác BIKH có

IK//BH

IK=BH

Do đó: BIKH là hình bình hành

Xét tứ giác CKIH có 

IK//HC

IK=HC

Do đó: CKIH là hình bình hành

25 tháng 10 2017

A B C H D E F

a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF

=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.

b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD

=> Tam giác DBH cân tại D.

c) Điểm G ở đâu hả bạn?

23 tháng 10 2017

a. Xét ∆AHB vuông tại H có HM là đường 

đường trung tuyến ( gt ) nên HM =

2AB( 1 ) 

Trong ∆ABC có N là trung điểm của AC ( gt ) O

và K là trung điểm của BC ( gt ) nên NK là 

đường trung bình của ∆ABC → NK = 2AB(  2 ) B H K C

Từ ( 1 ) & ( 2 ) → HM = NK I

b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )

+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là 

đường trung bình của ∆ABC → MK = AC ( 4)

Từ ( 3 ) & ( 4 ) → HN = 2MK (a)

+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là 

đường trung bình của ∆ABC → MN // BC hay MN // KH 

→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.

23 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

Xét ΔABH có

M là trung điểm của AB

MI//BH

Do đó: I là trung điểm của AH

13 tháng 11 2022

Lời giải làm sao ?

12 tháng 4 2020

a) Xét \(\Delta\)ABC ta có : 

M là trung điểm AB 

N là trung điểm AC 

=> MN là đường trung bình 

=> MN//BC , MN = 1/2 BC (1)

=> MNCB là hình thang 

b) Xét tam giác ABC ta có : 

N , P là trung điểm AC , BC (2)

=> NP là đường trung bình 

Từ (1) và (2) => MNPB là hình bình hành

15 tháng 4 2020

a) Xét \(\Delta\)ABC có: M; N là trung điểm của AB; AC 

=> MN là đường trung bình của \(\Delta\)ABC  (1)

=> MN//BC 

=> BCNM là hình thang 

b) (1) => MN //= \(\frac{1}{2}\) BC  mà BP = \(\frac{1}{2}\)BP  va B; P; C thẳng hàng  ( vì P là trung điểm BC ) 

=> MN// = BP => MNPB là hình bình hành 

c) MN // BC => MN // HP => MNHP là hình thang 

(b) => ^MNP = ^MBP => ^MNP = ^MBH (2) 

Lại có: ^NMH = ^MHB ( so le trong )  ( 3) 

Mặt khác: \(\Delta\)AHB vuông tại H có HM là trug tuyến đáy AB 

=> HM = \(\frac{1}{2}\)AB = BM 

=> \(\Delta\)MHB cân tại M => ^MBH = ^MHB  (4) 

Từ (2) ; (3) ; (4) => ^NMH = ^MNP 

=> MNPH là hình thang cân 

b) Điều kiện để HPNM là hình chữ nhật: 

Ta có: HPNM là hình thang cân

=> HPNM là hình chữ nhật  MH vuông góc BC 

Mặt khác ta có: AH vuông góc BC 

=> A; M; H thẳng hàng mà A; M; B thẳng hàng 

=> H trùng B 

=> Tam giác ABC vuong tại B.

15 tháng 4 2020

a) tam giác ABC có M ; N là trug điểm của AB ; AC

=) MN là trug bình của TG ABC (1)

=) MN/BC

=) BCNM là hình thag 

(mik chia ra nhé)