Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh đáy BC
nên H là trung điểm của BC
Xét ΔABC có
I là trung điểm của AB
H là trung điểm của BC
Do đó: IH là đường trung bình của ΔBAC
Suy ra: IH//AC và \(IH=\dfrac{AC}{2}\)
mà K∈AC và \(AK=\dfrac{AC}{2}\)
nên IH//AK và IH=AK
Xét tứ giác AIHK có
HI//AK
HI=AK
Do đó: AIHK là hình bình hành
b: Xét ΔBAC có
I là trung điểm của AB
K là trung điểm của AC
Do đó: IK là đường trung bình của ΔBAC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\)
mà \(BH=HC=\dfrac{BC}{2}\)
nên IK=BH=HC
Xét tứ giác BIKH có
IK//BH
IK=BH
Do đó: BIKH là hình bình hành
Xét tứ giác CKIH có
IK//HC
IK=HC
Do đó: CKIH là hình bình hành
a)Xét hình bình hành BFCE có D là trung điểm EF ,D là trung điểm của BC
Mà 2 đường chéo BC EF cắt nhau tại D =>BFCE là hình bình hành(dấu hiệu nhận Bt)
Bài :
a) Kẻ đường chéo BD.
- Xét tam giác ABD có: MA = MB , AQ = QD
=> MQ là đường trung bình của tam giác ABD
<=> MQ // BD , MQ = \(\frac{1}{2}BD\) (1)
- Xét tam giác BCD có : BN=NC , DP=PC
=> NP là đường trung bình của tam giác BCD
<=> NP // BD , NP = \(\frac{1}{2}BD\) (2)
Từ (1) và (2) suy ra tứ giác MNPQ là hình bình hành ( Vì có một cặp cạnh đối song song và bằng nhau )
b) Giả sử \(AC\perp BD\)
Gọi giao điểm của AC và BD là I, giao điểm của AC và MQ là K. Tương tự, MN // AC, PQ // AC.
Mà góc BIK = 90độ => góc MKI = 90 độ ( MQ // BD , góc MKI và góc BIK là hai góc so le trong )
MN // AC, góc MKI = 90 độ => góc NMK = 90 độ ( cặp góc trong cùng phía )
Hình bình hành MNPQ có góc M bằng 90 độ => MNPQ là hình chữ nhật ( Dấu hiệu nhận biết )
Vậy để MNPQ là hình chữ nhật thì đường chéo AC và BD phải vuông góc với nhau.
A B C H D E F
a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF
=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.
b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD
=> Tam giác DBH cân tại D.
c) Điểm G ở đâu hả bạn?
a. Xét ∆AHB vuông tại H có HM là đường
đường trung tuyến ( gt ) nên HM =
2AB( 1 )
Trong ∆ABC có N là trung điểm của AC ( gt ) O
và K là trung điểm của BC ( gt ) nên NK là
đường trung bình của ∆ABC → NK = 2AB( 2 ) B H K C
Từ ( 1 ) & ( 2 ) → HM = NK I
b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )
+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là
đường trung bình của ∆ABC → MK = AC ( 4)
Từ ( 3 ) & ( 4 ) → HN = 2MK (a)
+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là
đường trung bình của ∆ABC → MN // BC hay MN // KH
→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.
MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE, MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)
1) a. xét trong tam giác ABC có
I trung điểm AB và K trung điểm AC =>IK là đường trung bình của tam giác ABC=>IK song song với BC
vậy BCKI là hình thang (vì có hai cạng đáy song song)
b.
IK // và =1/2BC (cm ở câu a) =>IK song song NM
M trung điểm HC và N trung điểm HB mà HB+HC=CB =>MN=IK=1/2BC
suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK