Cho 7 số tự nhiên liên tiếp . Chứng minh rằng ta luôn tìm được 3 số mà tổng của chúng luôn chia hết cho 3 ( nhớ trình bày cách giải )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
neu 5 stn deu ko chia het cho 5 ma co so du khac nhau thi ta co :
+ So chia 5 du 1 co dang 5k +1
+ So chia 5 du 2 co dang 5k+2
+ So chia 5 du 3 co dang 5k +3
+ So chia 5 du 4 co dang 5k+4
tong cac stn do la :
5k +1+ 5k+ 2 +5k+3 +5k+4
= 5k .4 + ( 1+2+3+4)
= 5k.4+10
Vi : 5k chia het cho 5 nen\(\Rightarrow\)5k.4 chia het cho 5
10 chia het cho 5
\(\Rightarrow\)5k .4 +10 chia het cho 5
vay tong 4 stn do chia het cho 5 ( dpcm)
tick cho minh nha
neu 4 stn do chia 5 dc nhung so du khac nhau ma so nao chia cung deu du ta co :
+ so chia 5 du 1 co dang 5k+1
+ so chia 5 du 2 co dang 5k+2
+ so chia 5 du 3 co dang 5k +3
+ so chia 5 du 4 co dang 5k +4
tong 4 stn la:
5k+1 +5k+2+5k+3+5k+4
= 5k .4 + ( 1+2+3+4)
= 5k.4 +10
Vi : 5k chia het cho 5 nen\(\Rightarrow\)5k.4 chia het cho 5
10 chia het cho 5
\(\Rightarrow\)5k.4+10chia het cho 5
vay : tong 4 stn do chia het cho 5 ( dpcm)
tick minh nha
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
Mình nghĩ đề bài của bạn bị sai. Lấy ví dụ trường hợp : 2 số có dạng 3k + 2 và 1 số có dạng 3k + 1
=> 2(3k + 2) + 3k + 1 = 9k + 5
=> ko chia hết cho 3
VD 11 + 14 + 100 = 125 ko chia hết cho 3
Nếu thấy mình đúng thì li-ke cho mình nhé