Cho x,y,z>0 và \(x^2+y^2+z^2=3\)
Cmr:\(x^3+y^3+z^3\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{\sqrt{3\left(x^2+y^2+z^2\right)}}=3\)
Vậy BĐT được chứng minh . Dấu = xảy ra khi \(a=b=c=1\)
Có đúng không...? Tớ cũng đang mắc bài này...?
Ta có: \(x^3+y^3+z^3\ge x^2+y^2+z^2\forall x,y,z>0\)
Dấu "=" xảy ra khi x=y=z=1
Mà \(x^2+y^2+z^2=3\)
\(\Rightarrow x^3+y^3+z^3\ge3\)
\(\Rightarrowđpcm\)
x^3 +y^3 + z^3 >=3
x*x^2 + y*y^2 + z*z^2 >=3
(x*y*z)*(x^2 + y^2 + z^2)>=3
(x*y*z) *3>=3
mà x,y,z >0
=> x^3 + y^3 + z^3 >= 3
Lời giải:
Áp dụng bất đẳng thức AM-GM:
\(x^2+xy+y^2=(x+y)^2-xy\geq (x+y)^2-\frac{(x+y)^2}{4}=\frac{3(x+y)^2}{4}\)
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}}{2}(x+y)\)
Tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow A\geq \sqrt{3}(x+y+z)=3\sqrt{3}\) (đpcm)
Dấu $=$ xảy ra khi $x=y=z=1$
\(3=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)\(\Leftrightarrow\)\(x+y+z\le3\)
\(x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{3^2}{3}=3\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)
Ta có:\(x;y;z>0\Leftrightarrow x^3;y^3;z^3\ge0\Leftrightarrow x^3\ge x^2;y^3\ge y^2;z^3\ge z^2\)
\(\Leftrightarrow x^3+y^3+z^3\ge x^2+y^2+z^2hay:x^3+y^3+z^3\ge3\)