chứng tỏ : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{40}{50}=\frac{4}{5}\)
\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Từ đây ta suy ra
A > \(\frac{4}{5}+\frac{1}{2}+\frac{1}{100}=1,31>1\)
30 số hạng đầu lớn hơn 1
\(\frac{1}{10}+\frac{1}{11}+..+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}=\frac{1}{2}\)\(\frac{1}{2}\)
\(\frac{1}{20}+\frac{1}{21}+..+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+..+\frac{1}{30}=\frac{1}{3}\)
\(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)
=> \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
\(A=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)
\(A=\frac{1}{10}+\frac{99}{100}=1\)
=> A > 1
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
\(A=\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
\(A=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(A=\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+... +\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\Rightarrow A>1\)
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)
\(=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)
\(=\frac{1}{10}+\frac{90}{100}>1\)
\(A>1\left(đpcm\right)\)
\(C=\left(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
\(>\frac{1}{50}.41+\frac{1}{100}.50=\frac{41}{50}+\frac{50}{100}=\frac{33}{25}=1\frac{8}{25}>1\)
Ta thấy rằng mỗi số hạng trong tổng đều lớn hơn hoặc bằng \(\frac{1}{100}\)
=> \(C>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}x100=1\)
=> C>1 (Đpcm)
ta có : \(\frac{1}{10}>\frac{1}{100}\)
\(\frac{1}{11}>\frac{1}{100}\)
\(\frac{1}{12}>\frac{1}{100}\)
\(..............\)
\(\frac{1}{99}>\frac{1}{100}\)
\(\frac{1}{100}=\frac{1}{100}\)
cộng vế với vế ta được :
\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{91}{100}>1\)
Ta có:A=1/10+1/11+1/12+...+1/99+1/100
=1/10+(1/11+1/12+...+1/100)
>1/10+(1/100+1/100+1/100+...+1/100)
=1/10+90/100=1/10+9/10=1
Vậy A>1
Mình chúc bạn học tốt
Ta có : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)
= \(\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)\)
Thấy : \(\frac{1}{11}>\frac{1}{100}\)
\(\frac{1}{12}>\frac{1}{100}\)
...
\(\frac{1}{99}>\frac{1}{100}\)
Cộng từng vế : \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{1}{100}+...+\frac{1}{100}\)( 90 SH 1/100)
\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}>\frac{9}{10}\)
=> \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}\)
=> Tổng trên > 1