K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

\(\hept{\begin{cases}AB^2-BH^2=AH^2\\AC^2-CH^2=AH^2\end{cases}\Rightarrow}AB^2-BH^2=AC^2-CH^2\Rightarrow AB^2+CH^2=AC^2+BH^2\)

ΔAHB vuông tại H

=>AB^2=AH^2+HB^2

ΔAHC vuông tại H

=>AC^2=AH^2+CH^2

AB^2-AC^2

=BH^2+AH^2-AH^2-CH^2

=BH^2-CH^2

20 tháng 9 2021
a) tam giác ABH là tam giác vuông nên AB^2 - BH^2 = AH (1) chứng minh tương tự với tam giác ACH suy ra AC^2 - CH^2 = AH^2 (2) Từ (1) và (2) ta suy ra AB^2 - BH^2 = AC^2 - CH^2 câu b mình chưa biết làm nha :))
8 tháng 8 2018

Tham khảo nha .

Vẽ  HD // AC . và HE // AB 

Ta có : \(HD//AC\)

và \(BH\perp AC\)( vì H là trực tâm của tam giác ABC )

\(\Rightarrow HD\perp BH\)

\(\Rightarrow DB>BH\)

( Cạnh đối diện với góc vuông)

Chứng minh tương tự như trên ta có :

\(EC//DH\)

\(\Rightarrow CH\perp AB\)

\(\Rightarrow CH\perp CE\)

\(\Rightarrow EC>CH\)(Cạnh đối góc vuông)

Mặt khác ta có :

\(HD//AE\)

\(HE//DA\)

\(\Rightarrow\)Tứ giác AEHD là hình bình hành 

\(\Rightarrow AD=HE\)

Xét tam giác AEH có :

\(HE+AE>AH\)

\(\Rightarrow AD+AE>AH\)

\(\Leftrightarrow AB+AC=AD+DB+AE+EC\)

\(=\left(AD+AE\right)+DB+EC>AH+BH+CH\)

Chứng minh tương tự ta có :

\(AB+BC>AH+BH+CH\)

\(AC+BC>AH+BH+CH\)

Do đó : \(2\left(AB+BC+AC\right)>3\left(AH+BH+CH\right)\)

\(\Rightarrow AB+BC+AC>\frac{3}{2}\left(AH+BH+CH\right)\)(đpcm)

8 tháng 8 2018

A B C D E H

20 tháng 2 2022

AH cắt BC tại P.

-Xét △ABC có: 

BM, CN lần lượt là các đường cao (gt).

BM và CN cắt nhau tại H.

\(\Rightarrow\) H là trực tâm của △ABC.

\(\Rightarrow\) AH là đường cao của △ABC.

Mà AH cắt BC tại P (gt).

\(\Rightarrow\) AH⊥BC tại P.

-Xét △BHP và △BCM có:

\(\widehat{CBM}\) là góc chung.

\(\widehat{BPH}=\widehat{BMC}=90^0\)

\(\Rightarrow\)△BHP ∼ △BCM (g-g).

\(\Rightarrow\)\(\dfrac{BH}{BC}=\dfrac{BP}{BM}\) (2 tỉ lệ tương ứng).

\(\Rightarrow BH.BM=BP.BC\) (1)

-Xét △CHP và △CBN có:

\(\widehat{BCN}\) là góc chung.

\(\widehat{CPH}=\widehat{CNB}=90^0\)

\(\Rightarrow\)△CHP ∼ △CBN (g-g).

\(\Rightarrow\)\(\dfrac{CH}{CB}=\dfrac{CP}{CN}\) (2 tỉ lệ tương ứng).

\(\Rightarrow CH.CN=CP.CB\) (2)

-Từ (1), (2) suy ra:

\(BH.BM+CH.CN=BP.BC+CP.BC=BC\left(BP+CP\right)=BC.BC=BC^2\)