K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

Đường tròn nội tiếp. Đường tròn ngoại tiếp

a)

Gọi giao của AM và OI là H, giao của O'I và AN là K

Ta có: IO là phân giác \(\widehat{MIA}\) ( tính chất tiếp tuyến)

IO' là phân giác \(\widehat{NIA}\) ( tính chất tiếp tuyến)

Do đó suy ra \(\widehat{OIO'}\) =90o (2 tia phân giác của hai góc kề bù vuông góc với nhau)

Ta có: \(OA=OM=R\)

\(\Rightarrow\) O thuộc đường trung trực của AM (1)

Ta có: \(IA=IM\) ( tính chất tiếp tuyến)

\(\Rightarrow\) I thuộc đường trung trực của AM (2)

(1)(2)\(\Rightarrow\) OI là trung trực của AM

\(\Rightarrow\)\(\widehat{IHA}\) \(=90^o\)

Chứng minh tương tự: O'I là trung trực của AN

\(\Rightarrow\) \(\widehat{IKA}\) \(=90^o\)

Do đó AHIK là hình chữ nhật

\(\Rightarrow\) \(\widehat{MAN}\)\(=90^o\)

b)

Giả sử R>R'

Từ O'kẻ đường thẳng song song với MN cắt OM tại D

\(\Rightarrow\) \(OD\)//\(MN\)

\(\Rightarrow\)\(\widehat{O'DM} \)\(=90^o\)

\(\widehat{OMN}\)=90o, \(\widehat{O'NM}\) =90o

\(\Rightarrow MNO'D\) là hình chữ nhật

\(\Rightarrow MN=O'D,MD=NO'=R',OD=OM-MD=R-R'\)

\(\widehat{O'DM}\) =90

\(\Rightarrow\) \(\Delta ODO'\) là tam giác vuông

\(\Rightarrow DO^2=OO'^2-OD^2\)( định lý pythagor)

\(\Rightarrow DO^2=\left(R+R'\right)^2-\left(R-R'\right)^2=4RR'\)

\(\Rightarrow DO=2\sqrt{RR'}\)

\(\Rightarrow MN=2\sqrt{R.R'}\left(đpcm\right)\)

a: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp

b: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2

Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB^2=AE*AD=AH*AO

9 tháng 5 2023

tớ cảm ơn nhiều nhee

a: Xét ΔABE và ΔADB co

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB/AD=AE/AB

=>AB^2=AD*AE

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC

mà OB=OC

nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2=AE*AD

=>AH/AD=AE/AO

=>ΔAHE đồng dạng với ΔADO

=>góc AHE=góc ADO

=>góc OHE+góc ODE=180 độ

=>OHED nội tiếp

b: OHED nội tiếp

=>góc HED+góc HOD=180 độ

BD//AO

=>góc BDO+góc HOD=180 độ

=>góc BDO=góc HED

góc BCD+góc BDC=90 độ

góc BCD=góc BED
=>góc HED+góc BED=90 độ

=>HE vuông góc BF tại E

18 tháng 5 2017

Giải bài 8 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

(O; R) và (O’; R’) tiếp xúc ngoài với nhau

⇒ OO’ = R + r.

O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB

⇒ ΔPAO’ Giải bài 7 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9 ΔPBO

Giải bài 8 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ OB = 2.O'A hay R = 2.r

và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r

ΔO’AP vuông tại A nên:

O ’ P 2   =   O ’ A 2   +   A P 2

⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2

Diện tích hình tròn (O’; r) là:  S   =   π . r 2   =   2 π   ( c m 2 ) .

28 tháng 2 2017

Giải bài 8 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

(O; R) và (O’; R’) tiếp xúc ngoài với nhau

⇒ OO’ = R + r.

O’A ⊥ BP, OB ⊥ BP ⇒ O’A // OB

⇒ ΔPAO’ Giải bài 7 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9 ΔPBO

Giải bài 8 trang 134 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ OB = 2.O'A hay R = 2.r

và OP = 2.O’P ⇒ O’P = OO’ = R + r = 3.r

ΔO’AP vuông tại A nên:  O ' P 2 = O ' A 2 + A P 2

⇔ ( 3 r ) 2 = r 2 + 4 2 ⇔ 8 r 2 = 16 ⇔ r 2 = 2

Diện tích hình tròn (O’; r) là:  S = π · r 2 = 2 π cm 2

14 tháng 12 2021

mình mới đăng 1 câu thôi mà ạ

11 tháng 1 2019

Giải bài 28 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 28 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 28 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

22 tháng 1 2019

Giải bài 28 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 28 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 28 trang 79 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Trong một đường tròn:

+ Số đo của góc nội tiếp bằng một nửa số đo của cung bị chắn.

+ Số đo của góc tạo bởi tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.