Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Sửa đề: góc BAC=90 độ
Xét (O) có
IB,IA là các tiếp tuyến
Do đó: IB=IA
Xét (O') có
IA,IC là các tiếp tuyến
Do đó: IA=IC
Ta có: IB=IA
IA=IC
Do đó: IB=IC
=>I là trung điểm của BC
Xét ΔABC có
AI là đường trung tuyến
\(AI=\dfrac{BC}{2}\)
Do đó: ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)
2: Ta có: ΔACB vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
Xét tứ giác OBIA có \(\widehat{OBI}+\widehat{OAI}=90^0+90^0=180^0\)
nên OBIA là tứ giác nội tiếp
=>\(\widehat{OBA}=\widehat{OIA}\)
Xét tứ giác O'AIC có \(\widehat{O'AI}+\widehat{O'CI}=180^0\)
nên O'AIC là tứ giác nội tiếp
=>\(\widehat{O'IA}=\widehat{O'CA}\)
Ta có: \(\widehat{OBI}+\widehat{O'CI}=180^0\)
=>\(\widehat{OBA}+\widehat{CBA}+\widehat{BCA}+\widehat{O'CA}=180^0\)
=>\(\widehat{OBA}+\widehat{O'CA}=180^0-90^0=90^0\)
=>\(\widehat{OIA}+\widehat{O'IA}=90^0\)
=>\(\widehat{OIO'}=90^0\)
a: Xét (O) có
ID,IA là các tiếp tuyến
Do đó: IO là phân giác của góc DIA
=>\(\widehat{DIA}=2\cdot\widehat{OIA}\)
Xét (O') có
IA,IE là các tiếp tuyến
Do đó: IO' là phân giác của góc AIE
=>\(\widehat{AIE}=2\cdot\widehat{AIO'}\)
Ta có: \(\widehat{DIA}+\widehat{EIA}=180^0\)(hai góc kề bù)
=>\(2\left(\widehat{OIA}+\widehat{O'IA}\right)=180^0\)
=>\(2\cdot\widehat{OIO'}=180^0\)
=>\(\widehat{OIO'}=90^0\)
b: Xét (O) có
ID,IA là các tiếp tuyến
Do đó: ID=IA
Xét (O') có
IA,IE là các tiếp tuyến
Do đó: IA=IE
Ta có: IA=IE
ID=IA
Do đó: ID=IE
=>I là trung điểm của DE
=>I là tâm đường tròn đường kính DE
Xét ΔDAE có
AI là bán kính
\(AI=\dfrac{DE}{2}\)
Do đó: ΔADE vuông tại A
=>A nằm trên (I)
Xét (I) có
IA là bán kính
O'O\(\perp\)IA tại A
Do đó: OO' là tiếp tuyến của (I)
=>O'O là tiếp tuyến của đường tròn đường kính DE
a) Trong (O) có: KB,KM là hai tiếp tuyến cắt nhau tại K.
\(\Rightarrow KB=KM\left(1\right)\).
Trong (I) có: KC,KM là hai tiếp tuyến cắt nhau tại K.
\(\Rightarrow KC=KM\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow KB=KC\)
△BME nội tiếp đường tròn (O) đường kính BE.
⇒△BME vuông tại MM.
\(\Rightarrow\widehat{BME}=90^0\)
b) Ta có: K thuộc đường trung trực của BM (\(KB=KM\))
O thuộc đường trung trực của BM \(\left(OB=OM\right)\)
⇒OK là đường trung trực của BM mà OK cắt BM tại N.
⇒N là trung điểm BM.
- Ta có: K thuộc đường trung trực của CM (\(KC=KM\))
I thuộc đường trung trực của CM \(\left(IC=IM\right)\)
⇒IK là đường trung trực của CM mà IK cắt CM tại P.
⇒P là trung điểm IK và \(CM\perp IK\) tại P.
Xét △BCM có: N là trung điểm BM, P là trung điểm CM.
⇒NP là đường trung bình của △BCM.
⇒NP//CM.
c) *Hạ \(IH\perp OB\) tại H.
Xét tứ giác BCIH có: \(\widehat{HBC}=\widehat{BCI}=\widehat{BHI}=90^0\)
⇒BCIH là hình chữ nhật.
\(\Rightarrow BC=IH;IC=BH=r\)
Xét △ICK vuông tại C có IP là đường cao:
\(\Rightarrow IK.IP=IC^2=r^2\)
Xét △OHI vuông tại H có:
\(HI^2+OH^2=OI^2\)
\(\Rightarrow HI=\sqrt{OI^2-OH^2}=\sqrt{\left(r+R\right)^2-\left(r-R\right)^2}=\sqrt{4Rr}=2\sqrt{Rr}\)
Mà \(BC=HI\Rightarrow BC=2\sqrt{Rr}\left(1'\right)\)
Ta có: \(2\sqrt{IM.IO-IK.IP}=2\sqrt{r\left(r+R\right)-r^2}=2\sqrt{Rr}\left(2'\right)\)
\(\left(1'\right),\left(2'\right)\Rightarrow BC=2\sqrt{IM.IO-IK.IP}\)
K CHO MK VỚI Ạ
HÌNH TỰ VẼ,PHẦN 1 TỰ LÀM
2, Theo tính chất hai tiếp tuyến cắt nhau ta có:
\(IA=IB=IC\)
ΔABC có đường trung tuyến \(AI=\frac{1}{2}BC\)
NÊN: ΔABC VUÔNG TẠI A
⇒ˆBAC=90 độ(dpcm)
3,Theo tính chất hai tiếp tuyến cắt nhau ta có:
\(IO=IO'\)là các tia phân giác của hai góc kề bù \(AIB,AIC\)NÊN:
4,ΔOIO' vuông tại A có:
IA là đường cao nên theo hệ thức giữa cạnh và đường cao:
\(IA^2=OA.OA'\)
\(=9.4=36\)
=>\(IA=6\)
Vậy \(BC=2.IA=2.6=12\left(cm\right)\)
a)
Gọi giao của AM và OI là H, giao của O'I và AN là K
Ta có: IO là phân giác \(\widehat{MIA}\) ( tính chất tiếp tuyến)
IO' là phân giác \(\widehat{NIA}\) ( tính chất tiếp tuyến)
Do đó suy ra \(\widehat{OIO'}\) =90o (2 tia phân giác của hai góc kề bù vuông góc với nhau)
Ta có: \(OA=OM=R\)
\(\Rightarrow\) O thuộc đường trung trực của AM (1)
Ta có: \(IA=IM\) ( tính chất tiếp tuyến)
\(\Rightarrow\) I thuộc đường trung trực của AM (2)
(1)(2)\(\Rightarrow\) OI là trung trực của AM
\(\Rightarrow\)\(\widehat{IHA}\) \(=90^o\)
Chứng minh tương tự: O'I là trung trực của AN
\(\Rightarrow\) \(\widehat{IKA}\) \(=90^o\)
Do đó AHIK là hình chữ nhật
\(\Rightarrow\) \(\widehat{MAN}\)\(=90^o\)
b)
Giả sử R>R'
Từ O'kẻ đường thẳng song song với MN cắt OM tại D
\(\Rightarrow\) \(OD\)//\(MN\)
\(\Rightarrow\)\(\widehat{O'DM} \)\(=90^o\)
Mà \(\widehat{OMN}\)=90o, \(\widehat{O'NM}\) =90o
\(\Rightarrow MNO'D\) là hình chữ nhật
\(\Rightarrow MN=O'D,MD=NO'=R',OD=OM-MD=R-R'\)
Vì \(\widehat{O'DM}\) =90
\(\Rightarrow\) \(\Delta ODO'\) là tam giác vuông
\(\Rightarrow DO^2=OO'^2-OD^2\)( định lý pythagor)
\(\Rightarrow DO^2=\left(R+R'\right)^2-\left(R-R'\right)^2=4RR'\)
\(\Rightarrow DO=2\sqrt{RR'}\)
\(\Rightarrow MN=2\sqrt{R.R'}\left(đpcm\right)\)