giải thích tại sao: Nếu hai số cùng chia hết cho -3 thì tổng và hiệu của hai số đó cũng chia hết cho -3. Hãy thử phát biểu một kết luận tổng quát
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số cùng chia hết cho -3 thì được viết dưới dạng (-3).a và (-3).b (a, b \(\in\) Z)
Khi đó:
Tổng 2 số là: (-3).a + (-3).b = (-3).(a + b) \( \vdots \) (-3)
Hiệu 2 số là: (-3).a - (-3).b = (-3).(a - b)\( \vdots \) (-3)
Tổng quát: Cho các số a, b, c \(\in\) Z, a và b cùng chia hết cho c thì tổng và hiệu của chúng cũng chia hết cho c.
A) Gọi số dư của hai số đó là N ( N khác 0 ; N nhỏ hơn 7 )
Gọi 2 số đó là 7A và 7B ( A , B khác 0 ; A>B )
Ta có : ( 7A + N ) : 7 ( dư N )
( 7B + N ) : 7 ( dư N )
=> ( 7A + N ) - ( 7B + N )
= 7A - 7B
= 7 . ( A - B ) chia hết cho 7
Vậy 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 .
B) Theo đề ta có : 3 chỉ có 2 số dư là 1 hoặc 2
Gọi 2 số đó là 3k+1 và 3h+2
Ta có : 3k+1 : 3 ( dư 1 )
3h+2 : 3 ( dư 2 )
=> ( 3k+1 ) + ( 3h+2 )
= 3k+ 3h + 3
= 3 . ( k + h + 1 )
Vậy 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
Đọc thì nhớ tk nhá
Câu | Đúng | Sai |
a | x | |
b | x | |
c | x | |
d | x |
Giải thích:
a) Đúng vì theo tính chất 1 SGK.
b) Sai. Ví dụ: 5 ⋮̸ 6, 7 ⋮̸ 6 nhưng 5 + 7 = 12 ⋮ 6
c) Đúng vì nếu một trong hai số chia hết cho 5 mà số còn lại không chia hết cho 5 thì tổng đó không chia hết cho 5 (theo tính chất 2) (trái với đề bài).
d) Đúng vì nếu một số chia hết cho 7, số còn lại không chia hết cho 7 thì hiệu của chúng không chia hết cho 7 (theo tính chất 2) (trái với đề bài).
1 a chia hết cho b khi a là bội của b
b là ước của a
2 a chia hết cho m, b chia hết cho m
=> (a+b) chia hết cho m
a chia hết cho m, b chia hết cho m, c chia hết cho m
=> (a+b+c) chia hết cho m
3 Dấu hiệu chia hết cho 2 là những số có tận cùng là 0,2,4,6,8
Dấu hiệu chia hết cho 3 là những số có tổng chia hết cho 3
Dấu hiệu chia hết cho 5 là những số có tận cùng là 0 hoặc 5
Dấu hiệu chia hết cho 9 là những số có tổng chia hết cho 9
4 số nguyên tố là số tự nhiên >1, chỉ có 2 ước là 1 và chính nó
VD 47
hợp số là số tự nhiên >1, có nhiều hơn 2 ước.
VD 8
5 2 số nguyên tố cùng nhau là 2 số có ƯCLN bằng 1
VD 2 và 3
1.viết dạng tổng quát các tính chất giao hoán,kết quả của phép cộng,phép nhân,tính chất phân phối của phép nhân đối với phép cộng.
- Phép cộng : giao hoán : a+b=b+a , kết hợp : a+b+c = (a+b)+c=a+(b+c) , cộng với 0 : a+0=0+a=a
- Phân phối của phép nhân đối với phép cộng : a(b+c)=a.b+b.c
- Phép nhân : giao hoán : a.b=b.a , kết hợp : a.b.c=a(b.c)=(a.b).c , nhân với 1 : a.1=1.a=a
2.lũy thừa bậc n của a là gì?
Tích n thừa số , mỗi thừa số có giá trị bằng a .
3.viết công thức nhân hai lũy thừa cùng cơ số,chia hai lũy thừa cùng cơ số.
\(a^m.a^n=a^{m+n}\) \(a^m:a^n=a^{m-n}\left(m\ge n\right)\)
4.khi nào ta nói số tự nhiên a chia hết cho số tự nhiên b?
Khi a=b.q
5.phát biểu và viết dạng tổng quát hai tính chất chia hết của một tổng.
\(a⋮m;b⋮m=>a+b⋮m\) \(a⋮m;b⋮̸m=>a+b⋮̸m̸̸\)
6.phát biểu các dấu hiệu chia hết cho 2,cho 3,cho 5,cho 9.
Cho 2 : Chữ số tận cùng là số chẵn : 0;2;4;6;8
Cho 3 : Tổng các chữ số của số đó chia hết cho 3 thì số đó chia hết cho 3
Cho 5 : Có chữ số tận cùng là 0 hoặc 5
Cho 9 : Tổng các chữ số của số đó chia hết cho 9 thì số đó chia hết cho 9
7.thế nào là số nguyên tố,hợp số ? cho ví dụ.
Số nguyên tố là số tự nhiên lớn hơn 1 có 2 ước là 1 và chính nó .
VD : 2 ; 3 ; 5 ; 7 ; 11 ;.....
Hợp số là số tự nhiên lớn hơn 1 có 2 ước trở lên .
VD : 4 ; 6 ; 8 ; 9 ; 12 ; .....
8.thế nào là hai sô nguyên tố cùng nhau ? cho ví dụ.
2 số nguyên tố cùng nhau là 2 số có ƯCLN = 1
VD : 2 và 5 ; 3 và 7 ; 15 và 8 ; .......
9.ƯCLN của hai hay nhiều số là gì ? nếu cách tìm.
ƯCLN của hai hay nhiều số là số lớn nhất trong tập hợp ƯC của các số đó .
* Cách tìm :
+ Phân tích mỗi số ra thừa số nguyên tố .
+ Chọn các thừa số chung
+ Lập tích các thừa số đã chọn với số mũ nhỏ nhất . Tích đó chính là ƯCLN của các số đó .
10.BCNN của hai hay nhiều số là gì ? nêu cách tìm.
BCNN của hai hay nhiều số là số nhỏ nhất trong tập hợp BC của các số đó .
* Cách tìm :
+ Phân tích mỗi số ra thừa số nguyên tố .
+ Chọn các thừa số chung và riêng
+ Lập tích các thừa số đã chọn với số mũ lớn nhất . Tích đó chính là BCNN của các số đó .
Nếu cần mk làm câu 2 trc :
2)
a.
Gọi số tự nhiên đầu tiên là a
=> 2 số tiếp theo là a+1 và a+2
=> Tổng của chúng là :
a + a + 1 + a + 2
= 3a + 3
= 3 ( a + 2 ) chia hết cho 3 ( đpcm )
b.
Gọi số tự nhiên đầu tiên là a
=> 3 số tiếp theo là a+1; a+2 và a+3
=> tổng của chúng là :
a + a + 1 + a + 2 + a + 3
= 4a + 6
ta có 4a chia hết cho 4 mà 6 ko chia hết cho 4
=> ko chia hết
1)
a.
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
+) Nếu a chia hết cho 3 => đpcm
+) Nếu a ko chia hết cho 3 : ( có 2 trường hợp )
TH1 : a = 3k + 1
=> a + 2 = 3k + 1 + 2
=> a + 2 = 3k + 3
=> a + 2 = 3 ( k + 1 ) chia hết cho 3
=> a + 2 chia hết cho 3 ( đpcm )
TH2 : a = 3k + 2
=> a + 1 = 3k + 2 + 1
=> a + 1 = 3k + 3
=> a + 1 = 3 ( k + 1 ) chia hết cho 3
=> a + 1 chia hết cho 3 ( đpcm )
a.(b + c) = a.b + a.c
2.
Lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a:
3.
a) Nhân hai lũy thừa cùng cơ số :
am . an = am + n
b) Chia hai lũy thừa cùng cơ số :
am : an = am – n
4. Khi số tự nhiên a chia hết cho số tự nhiên b khác 0 nếu có số tự nhiên k sao cho a = b . k thì ta nói số tự nhiên a chia hết cho số tự nhiên b.
Bài 1:
a+b=b+a
a(b+c)=ab+ac
Bài 3:
\(a^n\cdot a^m=a^{n+m}\)
\(a^n:a^m=a^{n-m}\)
Bài 4:
a chia hết cho b khi b là ước của a và a là bội của b