K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

em chưa học lớp 9 nhưng làm thử có gì sai đừng dis em

\(\frac{a+2}{\sqrt{a^2-4}}\)

\(\frac{a+2}{a-2}\)

đề bài chỉ bảo khử căn nên em làm mỗi z thui

20 tháng 7 2019

Nhân cả 2 với lượng ở mẫu là Ok 

20 tháng 7 2019

\(\frac{\sqrt{x^2+a^2}+a}{a-\sqrt{x^2-a^2}}=\frac{\left(a+\sqrt{x^2+a^2}\right)\left(a+\sqrt{x^2-a^2}\right)}{\left(a-\sqrt{x^2-a^2}\right)\left(a+\sqrt{x^2-a^2}\right)}=\frac{...}{a^2-x^2+a^2}=\frac{...}{2a^2-x^2}\)

30 tháng 10 2019

gải phương trình \(\sqrt[3]{x}-3\sqrt[3]{x}=20\)

30 tháng 10 2019

gải phương trình\(x\sqrt[]{\frac{1}{x}}-2x\sqrt[3]{x}=20\)

AH
Akai Haruma
Giáo viên
7 tháng 10 2020

Lời giải:

\(\sqrt{\frac{(1+\sqrt{2})^3}{27}}=\sqrt{\frac{(1+\sqrt{2})^3}{3^3}}=\sqrt{\frac{3(1+\sqrt{2})^3}{3^4}}\)

\(=\frac{(1+\sqrt{2})\sqrt{3+3\sqrt{2}}}{9}\)

\(ab\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{(ab)^2(\frac{1}{a}+\frac{1}{b})}=\sqrt{ab^2+a^2b}\)

22 tháng 11 2019

Có nhầm đề không vậy? Ở tử có n dấu căn, ở mẫu có n-1

dấu căn . giả sử có một biểu thức bất kì: \(\frac{\sqrt{2+\sqrt{2}}}{\sqrt{2}}>1\)

vậy sao chứng minh?

23 tháng 11 2019

Đề không nhầm đâu bạn à !