K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

A B C E K

a, AB = 5 => AB^2 = 5^2 = 25

AC = 3 => AC^2 = 3^2 = 9

BC = 4 => BC^2 = 4^2 = 16

=> AC^2 + BC^2 = 9 + 16 = 25 = AB^2

=> tam giác ABC vuông tại C (đl Pytago đảo)

b, 

a) Ta có : AB2 = 52 = 25 cm

Mà AC2 + BC2 = 42 + 32 = 15 + 9 = 25cm

=> AB2 = AC2 + BC2 

=> ∆ABC vuông tại C 

b) Xét ∆ vuông ACE và ∆ vuông AKE ta có : 

AE chung 

CAE = BAE ( AE là phân giác CAB )

=> ∆ACE = ∆AKE ( ch-gn)

=> AC = AK = 3cm

Mà AK + KB = AC 

=> KB = 5 - 3 = 2cm

c ) Xét ∆ vuông KEB ta có :

KE < EB ( Quan hệ giữa cạnh huyền và cạnh góc vuông) 

Mà ∆ACE = ∆AKE (cmt)

=> CE = EK 

=> EC< EB 

d) Vì ∆ACE = ∆AKE (cmt)

=> AC = AK 

=> ∆ACK cân tại A 

Xét ∆ vuông ECD và ∆ vuông CKB ta có : 

CE = EK (cmt)

KEB = CED ( đối đỉnh) 

=> ∆ECD = ∆CKB (cgv -gn)

=> CD = KB ( tương ứng) 

Mà AC + CD = AD 

AK + KB = AB 

=> AD = AB 

=> ∆ABD cân tại A

Vì ∆ACK cân tại A (cmt)

=> ACK = \(\frac{180°\:-\:CaB}{2}\)

Vì ∆ABD cân tại A 

=> ADC = \(\frac{180°\:-\:CAB}{2}\)

=> ADC = ACK 

Mà 2 góc này ở vị trí đồng vị 

=> CK //DB 

a) Ta có : 

BC2 = 25cm

AC2 + AB2 = 9 + 16 = 25cm

=> BC2 = AB+ AC2

=> ∆ABC vuông tại C 

b) Xét ∆ vuông CAE và ∆ vuông KAE ta có :

AE chung 

CAE = KAE ( AE là phân giác )

=> ∆CAE = ∆KAE (ch-gn)

=> AC = AK = 3cm

Mà AK + KB = AB

=> KB = 2cm 

c) Vì ∆CAE = ∆KAE (cmt)

=> CE = EK 

Xét ∆ vuông KEB ta có : 

EK > EB ( Trong ∆ vuông cạnh góc vuông luôn luôn nhỏ hơn cạnh huyền)

Mà EK = CE 

=> CE< EB 

19 tháng 7 2019

a ) \(\Delta ABC\)có : AC2 + BC2 = 32 + 42 = 25

                              AB2 = 52 = 25

=> AC2 + BC2 = AB2

Theo đ/l Py - ta - go đảo => Tam giác ABC vuông

15 tháng 6 2018

a, Xét ∆ ABC vuông tại A

➡️AB2 + AC2 = BC2 (Pitago)

➡️BC2 = 32 + 42

➡️BC2 = 25

➡️BC = 5 (cm) 

b, Xét ∆ ABD và ∆ EBD có:

Góc A = góc E = 90°

BD chung

Góc ABD = góc EBD (gt)

➡️∆ ABD = ∆ EBD (ch - gn)

➡️AB = EB (2 cạnh t/ư)

c, Ta có: 

BA + AK = BK

BE + EC = BC

mà AB = EB (cmt)

      AK = EC (gt)

➡️BK = BC

Xét ∆ BKI và ∆ BCI có:

BK = BC (cmt)

Góc ABD = góc EBD (gt)

BI chung

➡️∆ BKI = ∆ BCI (c.g.c)

➡️Góc BKI = góc BCI (2 góc t/ư)

d, Xét ∆ ABI và ∆ EBI có:

AB = EB (cmt) 

Góc ABD = góc EBD (gt)

BI chung

➡️∆ ABI = ∆ EBI (c.g.c)

➡️IA = IE (2 cạnh t/ư)

Hok tốt~