K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

\(2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1< 3^{32}\)

Gợi ý: Sử dụng liên tục tính chất \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

17 tháng 7 2019

2(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)

= (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)

= (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)

= (34 - 1)(34 + 1)(38 + 1)(316 + 1)

= (38 - 1)(38 + 1)(316 + 1)

= (316 - 1)(316 + 1)

= 332 - 1 < 332 

e) Ta có: \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{2}+1-\sqrt{2}+1\)

=2

29 tháng 5 2021

a, 1/2.2/3.3/4...n-1/n=1/n

b,(-1/2):..:(-49/50)=50/4=25/2

10 tháng 7 2017

Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)

\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)

Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)

      \(\left|x-\frac{3}{7}\right|\ge0\forall x\)

Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)

29 tháng 6 2017

Baì này mình mới làm lúc sáng bạn vào câu hỏi tương tự có đấy

8 tháng 7 2018

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(\Rightarrow2A=3^{32}-1\)

\(\Rightarrow A=\frac{3^{32}-1}{2}< 3^{32}-1=C\)

6 tháng 3 2020

\(a,-7-\left[\left(-19\right)+\left(21\right)\right].\left(-3\right)-\left[\left(32\right)+\left(-7\right)\right]\)

\(=-7-\left[21-19\right].\left(-3\right)-\left[32-7\right]\)

\(=-7-2.\left(-3\right)-25\)

\(=-7+6-25=-26\)

\(b,\left(-2\right)^2.3-\left(1^{10}+8\right):\left(-3\right)^2\)

\(=4.3-9:9\)

\(=12-1=11\)

7 tháng 7 2018

\(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

                \(.........\)

\(=\frac{1}{2}\left(3^{32}-1\right)\)\(< \)\(3^{32}-1\)\(=\)\(A\)

Vậy  \(B< A\)

7 tháng 7 2018

 A=1.853020189*10 \(^{15}\)

B= 9.265100944*10\(^{15}\)

tự so sánh

9 tháng 7 2015

A=(3+1)(32+1)(34+1)(38+1)(316+1)

=>2A=2.(3+1)(32+1)(34+1)(38+1)(316+1)

=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)

=(32-1)(32+1)(34+1)(38+1)(316+1)

=(34+1)(34+1)(38+1)(316+1)

=(38-1)(38+1)(316+1)

=(316-1)(316+1)

=332-1

=>A=\(\frac{3^{32}-1}{2}

13 tháng 9 2019

Let A = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

=> 2A = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

= (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

= (34 - 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

= (38 - 1)(38 + 1)(316 + 1)(332 + 1)

= (316 - 1)(316 + 1)(332 + 1)

= (332 - 1)(332 + 1)

= 364 - 1

A=36412