K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

đề đầu

9 tháng 10 2021

tìm A

 

11 tháng 4 2017

xét \(\frac{a}{n.\left(n+a\right)}=\frac{\left(n+a\right)-n}{n.\left(n+a\right)}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

vậy ............................

28 tháng 7 2015

        ta có \(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)

                            vậy \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

1 tháng 12 2015

nâng cap phát triển 6 có

11 tháng 11 2023

a/ \(10^n+2^3=1000...08\) (n-1 chữ số 0)

Tổng các chữ số của \(10^n+2^3\) là \(1+8=9⋮9\Rightarrow10^n+2^3⋮9\)

b/ \(10^n+26=1000...026\) (n-2 chữ số 0)

\(1000...026⋮2\Rightarrow10^n+26⋮2\)

Tổng các chữ số của \(10^n+26\) là \(1+2+6=9⋮9\Rightarrow10^n+26⋮9\)

Mà 2 và 9 là 2 số nguyên tố cùng nhau

\(\Rightarrow10^n+26⋮2.9=18\)

c/

\(9^{2n+1}=9.9^{2n}\)

\(9^{2n}=\left(9^2\right)^n=81^n\) có chữ số hàng đơn vị là 1

\(\Rightarrow9^{2n+1}=9.9^{2n}\) có chữ số hàng đơn vị là 9

\(\Rightarrow9^{2n+1}+1\) có chữ số hàng đơn vị là 0 \(\Rightarrow9^{2n+1}+1⋮10\)

7 tháng 11 2016

Hình như bạn chép sai đề , để mk sửa và chép lại cho nha

Tìm các STN n sao cho n + 3 chia hết cho n - 1 

n + 3 chia hết cho n - 1 \(\Rightarrow n-1+4\) chia hết cho n - 1 \(\Rightarrow4\) chia hết cho n - 1

\(\Rightarrow n-1\in U\left(4\right)\)

ma U ( 4 ) = { 1 ; 2 ; 4 } nên n - 1 \(\in\left\{1;2;4\right\}\) nên \(n\in\left\{2;3;5\right\}\)

Ủng hộ nha Trần Thị Tuyết Nhung

7 tháng 11 2016
  • Ta có: n+3=(n+1)+2 chia hết cho n+1 khi 2 chia hết cho n+1.

Có các trường hợp:

+/ n+1=1 => n=0

+/ n+1=2 => n=1

ĐS: n=0 và n=1

27 tháng 6 2017

\(\frac{1}{n.\left(n+1\right)}=\frac{\left(n+1\right)-n}{n.\left(n+1\right)}\)

\(=\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)

\(=\frac{1}{n}-\frac{1}{n+1}\left(dpcm\right)\)

27 tháng 6 2017

Xét \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\left(đpcm\right)\)

26 tháng 7 2017

1) n=0

2) n=2