K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(A=\left(x-y\right)\left(x^2+xy+y^2\right)=2\left(x^2-2xy+y^2\right)+6xy=2\left(x-y\right)^2+6x\left(x-2\right)\)

\(=6\left(x^2-2x\right)+8=6\left(x-1\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-1\end{cases}}\)

23 tháng 7 2021

1) `(x-3)^4 >=0`

`2.(x-3)^4>=0`

`2.(x-3)^4-11 >=-11`

`=> A_(min)=-11 <=> x-3=0<=>x=3`

2) `|5-x|>=0`

`-|5-x|<=0`

`-3-|5-x|<=-3`

`=> B_(max)=-3 <=>x=5`.

Bài 1: 

Ta có: \(\left(x-3\right)^4\ge0\forall x\)

\(\Leftrightarrow2\left(x-3\right)^4\ge0\forall x\)

\(\Leftrightarrow2\left(x-3\right)^4-11\ge-11\forall x\)
Dấu '=' xảy ra khi x=3

7 tháng 9 2019

Ta có : \(\left|x-5\right|\ge0\forall x\)

\(\left|y-3\right|\ge0\forall y\)

\(\Rightarrow50+\left|x-5\right|+\left|y-3\right|\ge50\)

\(\Rightarrow\text{ Min A = 50}\)

Dấu "=" xảy ra khi 

\(\hept{\begin{cases}\left|x-5\right|=0\\\left|y-3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-5=0\\y-3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=3\end{cases}}}\)

Vậy GTNN của A = 50 khi \(\hept{\begin{cases}x=5\\y=3\end{cases}}\)

6 tháng 7 2017

ta có: /2,5-x/\(\ge\)0, nên A= /2,5-x/ + 5,8 \(\ge\)5,8

vậy giá trị nn của A là 5,8, A=5,8 khi /2,5-x/=0

                                                     <=> x=2,5

ta có: /x+2/3/ \(\ge\)0 nên B= 2 - /x+2/3/ \(\le\)2

vậy gtln của B là 2, B=2 khi /x+2/3/=0 <=> x= -2/3

5 tháng 10 2021

\(A=12-\left(2,5-y\right)^4\le12\)

\(maxA=12\Leftrightarrow y=2,5\)

\(B=10-\left(3+4y\right)^2-\left(x-2y\right)^2\le10\)

\(maxB=10\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-\dfrac{3}{4}\end{matrix}\right.\)

17 tháng 9 2017

A = ( x - 2 ) ^ 2 + 5

=> A nhỏ nhất khi x = 2

Lúc đó giá trị của A = 5

B = 12 + ( 3 - x ) ^ 2

=> B nhỏ nhất khi x = 3

Lúc đó giá trị của B = 12

$a)ĐK:8x+2\ge 0$

$\to 8x \ge -2$

$\to x \ge -\dfrac14$

$b)ĐK:\dfrac{-5}{6-3x} \ge 0(x \ne 2)$

Mà $-5<0$

$\to 6-3x<0$

$\to 6<3x$

$\to x>2$

$*A=x-2\sqrt{x-2}+3(x \ge 2)$

$=x-2-2\sqrt{x-2}+1+4$

$=(\sqrt{x-2}-1)^2+4 \ge 4$

Dấu "=" xảy ra khi $\sqrt{x-2}-1=0 \Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$

a) \(x\ge-\dfrac{1}{4}\)

b) x<2

24 tháng 4 2022

\(A=\dfrac{27-12x}{x^2+9}=\dfrac{x^2-12x+36-\left(x^2+9\right)}{x^2+9}=\dfrac{\left(x-6\right)^2}{x^2+9}-1\ge-1\)

\(A_{min}=-1\Leftrightarrow x=6\)

\(A=\dfrac{27-12x}{x^2+9}=\dfrac{4\left(x^2+9\right)-\left(4x^2+12x+9\right)}{x^2+9}=4-\dfrac{\left(2x+3\right)^2}{x^2+9}\le4\)

\(A_{max}=4\Leftrightarrow x=\dfrac{-3}{2}\)