Hình thang cân ABCD có AB= 10cm,DC=26cm,cạnh bên =17cm
Tính đường cao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
link nè:https://olm.vn/hoi-dap/tim-kiem?q=cho+h%C3%ACnh+thang+c%C3%A2n+abcd+t%C3%ADnh+%C4%91%C6%B0%E1%BB%9Dng+cao+bi%E1%BA%BFt+ab=10cm,cd=26cm,ad=17+cm&id=1027780\
học tốt
Gửi bạn lời giải. Có gì sai sót thì bạn góp ý nhé!
Kẻ \(\)$\(CH \perp AB\)$ tại H, $\(DK \perp AB\)$ tại K.
Áp dụng định lí Pytago vào tam giác ABC vuông tại C, ta có:
$\(AC^2=AB^2-BC^2=26^2-10^2=576\)$
Áp dụng hệ thức lượng vào tam giác ABC vuông tại C với đường cao CH, ta có:
$\(\dfrac{1}{CH^2}=\dfrac{1}{DK^2}=\dfrac{1}{AC^2}+\dfrac{1}{BC^2}=\dfrac{1}{100}+\dfrac{1}{576}=\dfrac{169}{14400}\)$ (do ABCD là hình thang cân)
⇒ $\(CH^2=DK^2=\dfrac{14400}{169}\)$
⇒ $\(CH=DK=\dfrac{120}{13}\)$
Áp dụng định lí Pytago vào tam giác CHB vuông tại H và tam giác AKD vuông tại K có:
$\(BH^2=AK^2=10^2-\dfrac{14400}{169}=\dfrac{2500}{169}\)$ ⇒ $\(BH=AK=\dfrac{50}{13}cm\)$ Ta có: $\(AB=AK+HK+BH=AK+CD+HK\)$ ⇒ $\(CD=AB-AK-HK=26-\dfrac{100}{13}=\dfrac{238}{13}\)$
Ta có: $\({S}_{ABCD}=\dfrac{(AB+CD).AH}{2}=\dfrac{(26+\dfrac{238}{13}).\dfrac{120}{13}}{2}=\dfrac{34560}{169} cm^2\)$
HD = (CD – AB) / 2 = (26 – 10) / 2 = 8 (cm)
Trong tam giác vuông AHD có ∠ (AHD) = 90 0
A D 2 = A H 2 + H D 2 (định lý Pi-ta-go)
⇒ A H 2 = A D 2 - H D 2
A H 2 = 17 2 - 8 2 = 289 – 64 = 225
AH = 15 (cm)
Xét tam giác vuông \(AHC\)và tam giác vuông \(BKD\)ta có:
\(AD=BC\left(gt\right)\)
\(\widehat{C}=\widehat{D}\left(gt\right)\)
\(\Rightarrow\)tam giác vuông AHD = tam giác vuông BKC ( cạnh huyền - góc nhọn )
=> HC=HD(2 cạnh tương ứng)
Ta có: \(HK=10cm\)
\(\Rightarrow HC=\frac{CD-HK}{2}=\frac{26-10}{2}=8cm\)
Áp dụng định lí Pytago trong tam giác vuông AHC:
\(AC^2=HC^2+AH^2\\ \Rightarrow AH^2=AC^2-HC^2\\ =289-64=225\\ \Rightarrow AH=\sqrt{225}=15cm\)
Vậy đường cao của hình thang ABCD là 15cm