Giúp mình nha mọi người ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Lũy thừa với số mũ chẵn của một số hữu tỉ âm là số dương
Lũy thừa với số mũ lẻ của một số hữu tỉ âm là số âm
Bài 13:
a: \(x^3=343\)
nên x=7
b: \(\left(2x-3\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
a: \(A=\dfrac{4^2\cdot4^3}{2^{10}}=\dfrac{4^5}{2^{10}}=1\)
b: \(C=\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{100^4}{100^5}=\dfrac{1}{100}\)
Bài 9:
a: \(10^8\cdot2^8=20^8\)
b: \(10^8:2^8=5^8\)
c: \(25^4\cdot2^8=100^4\)
d: \(27^2:25^3=\left(\dfrac{9}{25}\right)^3\)
Bài 4:
a: \(x:\left(-\dfrac{1}{2}\right)^3=-\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{-1}{2}\cdot\dfrac{-1}{8}\)
hay \(x=\dfrac{1}{16}\)
b: \(\left(\dfrac{3}{4}\right)^3\cdot x=\left(\dfrac{3}{4}\right)^7\)
\(\Leftrightarrow x=\left(\dfrac{3}{4}\right)^7:\left(\dfrac{3}{4}\right)^3=\left(\dfrac{3}{4}\right)^4=\dfrac{81}{256}\)
4: Đặt \(x=\dfrac{a+b}{a-b};y=\dfrac{b+c}{b-c};z=\dfrac{c+a}{c-a}\).
Ta có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\dfrac{2a.2b.2c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
\(\Rightarrow xy+yz+zx=-1\).
Bất đẳng thức đã cho tương đương:
\(x^2+y^2+z^2\ge2\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-2\ge0\Leftrightarrow\left(x+y+z\right)^2\ge0\) (luôn đúng).
Vậy ta có đpcm
mình xí câu 45,47,51 :>
45. a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{4}{2b}\ge\dfrac{\left(1+2\right)^2}{a+2b}=\dfrac{9}{a+2b}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b
b) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)(1)
\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{b+c+c}=\dfrac{9}{b+2c}\)(2)
\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{\left(1+1+1\right)^2}{c+a+a}=\dfrac{9}{c+2a}\)(3)
Cộng (1),(2),(3) theo vế ta có đpcm
Đẳng thức xảy ra <=> a=b=c
1: Ta có: \(-\left(x+3\right)\left(x+2\right)+\left(2x-3\right)\left(5-x\right)\)
\(=-x^2-5x-6+10x-2x^2-15+3x\)
\(=-3x^2+8x-21\)
3: Ta có: \(\left(-x+6\right)\left(-x-2\right)+\left(3x-1\right)\left(-2x-3\right)\)
\(=\left(x-6\right)\left(x+2\right)-\left(3x-1\right)\left(2x+3\right)\)
\(=x^2-4x-12-6x^2-9x+2x+3\)
\(=-5x^2-11x-9\)