Tính
815.413
(1/2)18.(1/4)24
912.2710
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9^8\cdot2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(=\left(9\cdot2\right)^8-\left[\left(18^4\right)^2-1^2\right]\)
\(=18^8-\left(18^8-1\right)\)
\(=18^8-18^8+1\)
\(=1\)
Ta quy về dạng tổng quát xét cho dễ nhé.
\(\dfrac{1}{x\cdot\left(x+2\right)}=\dfrac{1}{2}.\dfrac{2}{x.\left(x+2\right)}=\dfrac{1}{2}.\left(\dfrac{1}{x}-\dfrac{1}{x-2}\right)\)
Từ đó áp dụng dạng tổng quát để rút gọn là ra.
Chúc em học tốt!
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)
\(=\dfrac{1}{20}\)
bạn viết vậy khó hiểu quá bạn viết bằng kí tự phân số ik ạ
\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
Biến đổi tử số
\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)
= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)
= \(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)
= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)
Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)
= \(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)
Vậy A = 20
\(8^{15}\times4^{13}=2^{45}\times2^{26}=2^{71}\)
\(\left(\frac{1}{2}\right)^{18}\times\left(\frac{1}{4}\right)^{24}=\left(\frac{1}{2}\right)^{18}\times\left(\frac{1}{2}\right)^{48}=\left(\frac{1}{2}\right)^{66}\)
\(9^{12}\times27^{10}=3^{24}\times3^{30}=3^{54}\)
\(8^{15}\cdot4^{13}=\left(4^2\right)^{15}\cdot4^{13}=4^{30}\cdot4^{13}=4^{43}\)
\(\left(\frac{1}{2}\right)^{18}\cdot\left(\frac{1}{4}\right)^{24}=\left(\frac{1}{2}\right)^{18}\cdot\left[\left(\frac{1}{2}\right)^2\right]^{24}=\left(\frac{1}{2}\right)^{66}\)
\(9^{12}\cdot27^{10}=3^{36}\cdot3^{30}=3^{66}\)