Bài 2 :
a)(2x+y^2)^3
b)(1/2x^2+1/3y)^3
c)(3x^2-2y)^3
d)(2/3x^2-1/2y)^3
Mk ko chắc kết quả của mk có đúng hay ko nên mong mọi người cùng góp ý
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\)a: \(\left(x-2y\right)^3\)
\(=x^3-3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=x^3-6x^2y+12xy^2-8y^3\)
b: \(\left(2x+y\right)^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=8x^3+12x^2y+6xy^2+y^3\)
c: \(\left(\dfrac{1}{3}x-1\right)^3=\left(\dfrac{1}{3}x\right)^3-3\cdot\left(\dfrac{1}{3}x\right)^2\cdot1+3\cdot\dfrac{1}{3}x\cdot1^2-1^3\)
\(=\dfrac{1}{27}x^3-\dfrac{1}{3}x^2+x-1\)
d: \(\left(x+\dfrac{1}{3}y\right)^3\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{3}y+3\cdot x\cdot\left(\dfrac{1}{3}y\right)^2+\left(\dfrac{1}{3}y\right)^3\)
\(=x^3+x^2y+\dfrac{1}{3}xy^2+\dfrac{1}{27}y^3\)
e: (2x-3y)3
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot3y+3\cdot2x\cdot\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^3-36x^2y+54xy^2-27y^3\)
f: \(\left(x^2-2y\right)^3\)
\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2y+3\cdot x^2\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=x^6-6x^4y+12x^2y^2-8y^3\)
g: \(\left(\dfrac{1}{2}x-y\right)^3=\left(\dfrac{1}{2}x\right)^3-3\cdot\left(\dfrac{1}{2}x\right)^2\cdot y+3\cdot\dfrac{1}{2}x\cdot y^2-y^3\)
\(=\dfrac{1}{8}x^3-\dfrac{3}{4}x^2y+\dfrac{3}{2}xy^2-y^3\)
\(a,2x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\in\forall Z\\x=1\end{cases}}}\)
\(b,x\left(2x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
\(c;\left(x+1\right)+\left(x+3\right)+...............+\left(x+99\right)=0\)
\(\Rightarrow\left(x+x+...........+x\right)+\left(1+3+............+99\right)=0\)
\(\Rightarrow50x+2500=0\)
\(\Rightarrow50x=-2500\)
\(\Rightarrow x=-50\)
2/
\(a;\left(x-3\right)\left(2y+1\right)=7\)
\(\Rightarrow\left(x-3\right);\left(2y+1\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Xét bảng
x-3 | 1 | -1 | 7 | -7 |
2y+1 | 7 | -7 | 1 | -1 |
x | 4 | 2 | 10 | -4 |
y | 3 | -4 | 0 | -1 |
Vậy...............................
\(b;xy+3x-2y=11\)
\(\Rightarrow x\left(y+3\right)-2y-6=11-6\)
\(\Rightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Rightarrow\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y+3\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét bảng'
x-2 | 1 | -1 | 5 | -5 |
y+3 | 5 | -5 | 1 | -1 |
x | 3 | 1 | 7 | -3 |
y | 2 | -8 | -2 | -4 |
Vậy................................
\(2x\left(x^2-7x-3\right)=2x^3-14x-6x\)
\(4xy^2\left(-2x^3+y^2-7xy\right)=-8x^4y^2+4xy^5-28x^2y^3\)
a: |x+1|+(2y-1)^2=3
mà x,y nguyên
nên (2y-1)^2=1 và |x+1|=2
=>\(\left\{{}\begin{matrix}x+1\in\left\{2;-2\right\}\\2y-1\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;-3\right\}\\y\in\left\{1;0\right\}\end{matrix}\right.\)
c: |3x-1|+|2y-5|=3
Th1: |3x-1|=0 và |2y-5|=3
=>3x-1=0 và 2y-5 thuộc {3;-3}
=>y thuộc {4;1}(nhận) và x=1/3(loại)
TH2: |3x-1|=1 và |2y-5|=2
=>3x-1 thuộc {1;-1} và 2y-5 thuộc {2;-2}
=>x thuộc {2/3;0} và y thuộc {7/2;3/2}
=>Loại
TH3: |3x-1|=2 và |2y-5|=1
=>3x-1 thuộc {2;-2} và 2y-5 thuộc {1;-1}
=>x=3 và y thuộc {3;2}
TH4: |3x-1|=3 và |2y-5|=0
=>3x-1 thuộc {3;-3} và 2y-5=0
=>y=5/2(loại)
d: |2x+1|+|y-5|=0
=>2x+1=0 và y-5=0
=>y=5(nhận) và x=-1/2(loại)
=>Ko có cặp số (x,y) nào thỏa mãn
\(a,=27x^3+27x^2+9x+1\)
\(b,=\dfrac{x^3}{27}-\dfrac{x^2}{3}+x-1\)
\(c,=-\left(27x^3-27x^2y^2+9xy^4-y^6\right)\)
\(=-27x^3+27x^2y^2-9xy^4+y^6\)
\(d,=\dfrac{x^3}{y^3}-\dfrac{6x}{y}+\dfrac{12y}{x}-\dfrac{8y^3}{x^3}\)
a) \(\left(3x+1\right)^3=27x^3+27x^2+9x+1\)
b) \(\left(\dfrac{x}{3}-1\right)^3=\dfrac{x^3}{27}-\dfrac{x^2}{3}\)
c) \(\left(-y^2+3x\right)^3=27x^3-27x^2y^2+9xy^4-y^6\)
d) \(\left(\dfrac{x}{y}-\dfrac{2y}{x}\right)^3=\dfrac{x^3}{y^3}-\dfrac{6x}{y}+\dfrac{12y}{x}-\dfrac{8y^3}{x^3}\)
1.
a.\(\Leftrightarrow7x-5x=3+12\)
\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)
b.\(\Leftrightarrow6x-10-7x-7=2\)
\(\Leftrightarrow x=-19\)
c.\(\Leftrightarrow1-3x=4x-3\)
\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)
d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)
\(\Leftrightarrow-2=12\left(voli\right)\)
a)(2x+y^2)^3
\(=\left(2x\right)^3+3.\left(2x\right)^2y^2+3.2x\left(y^2\right)^2+\left(y^2\right)^3\)
\(=8x^3+3.4x^2y^2+6xy^4+y^6\)
\(=8x^3+12x^2y^2+6xy^4+y^6\)
c)(3x^2-2y)^
\(\left(3x^2\right)^3-3\left(3x^2\right)^2.2y+3.\left(3x^2\right)\left(2y\right)^2-\left(2y\right)^3\)
\(=27x^6-3.9x^4.2y+3.3x^2.4y^2-8y^3\)
\(=27x^6-54x^4y+36x^2y^2-8y^3\)