Tìm x,y nguyên dương biết: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{xy}=1\)=>\(\dfrac{x+y+1}{xy}=1\)=>x+y+1=xy =>x-xy=-1-y =>x(1-y)=-1-y
=>x=\(\dfrac{-1-y}{1-y}\) mà x nguyên dương nên -1-y ⋮ 1-y
=>(1-y)-2 ⋮ 1-y
=>2 ⋮ 1-y
=>1-y ∈{1;-1;2;-2}
=>y∈{0;2;-1;3}. Vì y nguyên dương và y khác 0 nên y∈{2;3}
* Nếu y=2 thì phương trình x+y+1=xy trở thành:
x+3=2x =>x=3
* Nếu y=3 thì phương trình x+y+1=xy trở thành:
x+4=3x =>x=2
- Vậy y=2 thì x=3 ; y=3 thì x=2.
Do x,y là các số nguyên dương nên \(\frac{1}{x}\ge1;\frac{1}{y}\ge1\Rightarrow\frac{1}{x}+\frac{1}{y}\ge2>\frac{1}{2}\)
\(\frac{x}{8}-\frac{1}{2}=\frac{1}{y}\)
\(\Leftrightarrow\frac{x}{8}-\frac{1}{y}=\frac{1}{2}\)
\(\Leftrightarrow\frac{xy-8}{8y}=\frac{1}{2}\)
\(\Leftrightarrow2\left(xy-8\right)=8y\)
\(\Leftrightarrow2xy-16=8y\)
\(\Leftrightarrow2xy-8y=16\)
\(\Leftrightarrow2y\left(x-4\right)=16\)
\(\Leftrightarrow y\left(x-4\right)=8=1.8=8.1=\left(-1\right)\left(-8\right)=\left(-8\right)\left(-1\right)=2.4=4.2=\left(-2\right)\left(-4\right)=\left(-4\right)\left(-2\right)\)
Còn lại tự lập bảng nha!
Bài giải
\(\frac{x}{8}-\frac{1}{2}=\frac{1}{y}\)
\(\frac{x}{8}-\frac{4}{8}=\frac{1}{y}\)
\(\frac{x-4}{8}=\frac{1}{y}\)
\(xy-4y=8\)
\(y\left(x-4\right)=8\)
\(\Rightarrow\text{ }y,\left(x-4\right)\inƯ\left(8\right)\)
Mà x ; y là số nguyên dương nên :
Ta có bảng :
x - 4 | 1 | 2 | 4 | 8 |
y | 8 | 4 | 2 | 1 |
x | 5 | 6 | 8 | 12 |
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(5\text{ ; }8\right)\text{ ; }\left(6\text{ ; }4\right)\text{ ; }\left(8\text{ ; }2\right)\text{ ; }\left(12\text{ ; }1\right)\)
Quy đồng lên ta có 3x+3y=xy
<=>3x=y(x-3)
<=> ban se co:
(x + y)/xy = 1/5
hay 5(x + y) = xy
hay 5x + 5y - xy =0
hayx(5 -y) = - 5y
hay x = 5y/(y - 5)
hay x = 5/(1 - 5/y)
vi 5 >0 => de x , y nguyen duong <=> 1 - 5y > 0 va x , y khac 0
va 1 - 5/y thuoc uoc cua 5 (+- 1 ; +-5)
ma` ta chi lay 1-5y > 0 => 1-5y = 1 hay 1- 5y = 5
=> y = 0 ( loai) va y = -4/5 (loai)
=> ko co x, y thoa man dieu kien de bai
#)Giải :
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\Leftrightarrow\frac{x+y}{xy}=\frac{1}{5}\Leftrightarrow5\left(x+y\right)=xy\Leftrightarrow5x+5y=xy\)
\(\Leftrightarrow xy-5x-5y=0\Leftrightarrow\left(x-5\right)\left(y-5\right)=25\)
Xét các TH rồi đưa ra KL
Ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\Leftrightarrow5(x+y)=xy\Leftrightarrow5x-xy+5y=0\)
\(\Leftrightarrow x(5-y)-5(5-y)=-25\)
\(\Leftrightarrow(5-x)(5-y)=25=1\cdot25=25\cdot1=(-1)(-25)=(-25)(-1)=5\cdot5=(-5)(-5)\)
Vì x,y > 0 nên 5 - x < 5 , 5 - y < 5.Do đó ta có các trường hợp:
Vậy : ...