Chứng minh (a^3) - (b^3) = [(a - b)^3] - 3ab(a - b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(=a^3+b^3+3ab\left(a+b\right)\)= Vế phải=>đpcm
Chỗ áp dụng :Ta có (a+b)^3 -3ab(a+b)
= (-7)^3 -3.12(-7)
= -343 +252
= -91
a)\(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3\)
b)\(\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
\(=a^3-b^3\)
A, Biến đổi vế phải ta có :
( a+ b)^3 - 3ab(a+b)
= a^3 + 3a^2.b + 3ab^2 + b^3 - 3a^2b- 3ab^2
=a^3 + b^ 3
Vaayj VT = VP Đẳng thức đc CM
b, tương tự
a. Xét VP = (a+b)3–3ab(a+b)
VP=a3+3a2b+3ab2+b3–3a2b–3ab2
VP=a3+b3
Nhận xét : VP=VT=a3+b3
b. Xét VP = (a–b)3+3ab(a–b)
VP=a3−3a2b+3ab2−b3+3a2b–3ab2
VP=a3–b3
Nhận xét : VP=VT=a3−b3
TA CÓ:
\(a^3-b^3=a^3-b^3-3a^2b+3a^2b-3ab^2+3ab^2\)
\(a^3-b^3=\left(a^3-3a^2b+3ab^2-b^2\right)+\left(3a^2b-3ab^2\right)\)
VẬY \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\left(ĐPCM\right)\)
Mình nghĩ bạn ghi đề lộn dấu r