K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

Chi tiết Đi có đc ko z. Ben đăng như thế ai Bt gì mà lần

12 tháng 7 2019

Bài tam giác cân làm gì có bài 5

NV
28 tháng 7 2021

\(A=\dfrac{\sqrt{20}-6}{\sqrt{14-6\sqrt{5}}}-\dfrac{\sqrt{20}-\sqrt{28}}{\sqrt{12-2\sqrt{35}}}=\dfrac{-2\left(3-\sqrt{5}\right)}{\sqrt{\left(3-\sqrt{5}\right)^2}}+\dfrac{2\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}}\)

\(=\dfrac{-2\left(3-\sqrt{5}\right)}{3-\sqrt{5}}+\dfrac{2\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}=-2+2=0\)

\(B=\sqrt{\dfrac{\left(9-4\sqrt{3}\right)\left(6-\sqrt{3}\right)}{\left(6-\sqrt{3}\right)\left(6+\sqrt{3}\right)}}-\sqrt{\dfrac{\left(3+4\sqrt{3}\right)\left(5\sqrt{3}+6\right)}{\left(5\sqrt{3}-6\right)\left(5\sqrt{3}+6\right)}}\)

\(=\sqrt{\dfrac{66-33\sqrt{3}}{33}}-\sqrt{\dfrac{78+39\sqrt{3}}{39}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\right)=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-1-\sqrt{3}-1\right)=-\sqrt{2}\)

a) Ta có: \(A=\dfrac{\sqrt{10}-3\sqrt{2}}{\sqrt{7-3\sqrt{5}}}-\dfrac{\sqrt{10}-\sqrt{14}}{\sqrt{6-\sqrt{35}}}\)

\(=\dfrac{2\sqrt{5}-6}{3-\sqrt{5}}-\dfrac{2\sqrt{5}-2\sqrt{7}}{\sqrt{7}-\sqrt{5}}\)

\(=\dfrac{\left(2\sqrt{5}-6\right)\left(3+\sqrt{5}\right)}{4}-\dfrac{\left(2\sqrt{5}-2\sqrt{7}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}\)

\(=\dfrac{\left(\sqrt{5}-3\right)\left(3+\sqrt{5}\right)-\left(2\sqrt{5}-2\sqrt{7}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}\)

\(=\dfrac{5-9-2\left(5-7\right)}{2}\)

\(=\dfrac{-4-2\cdot\left(-2\right)}{2}\)

\(=0\)

 

15 tháng 2 2020

Ta có: \(\frac{x+2}{y+10}\)\(=\)\(\frac{1}{5}\)\(\Rightarrow\)\(5\left(x+2\right)=y+10\)(1)

             \(y-3x=2\)\(\Rightarrow\)\(y+2=3x\)                              (2)

Thay (2) vào (1) ta có:

\(5\left(x+2\right)=\left(y+2\right)+8\)

\(5x+10=3x+8\)

\(5x-3x=8-10\)

\(2x=-2\)

\(x=-2:2\)

\(x=-1\)

Vậy: x=-1

Chúc bạn làm bài tốt!

NV
10 tháng 3 2022

1.a

\(\lim\dfrac{3n^3+2n^2+n}{n^3+4}=\lim\dfrac{n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)}{n^3\left(1+\dfrac{4}{n^3}\right)}\)

\(=\lim\dfrac{3+\dfrac{2}{n}+\dfrac{1}{n^2}}{1+\dfrac{4}{n^3}}=\dfrac{3+0+0}{1+0}=3\)

b.

\(\lim\limits_{x\rightarrow3}\dfrac{x^2+2x-15}{x-3}=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+5\right)}{x-3}\)

\(=\lim\limits_{x\rightarrow3}\left(x+5\right)=8\)

NV
10 tháng 3 2022

2.

Ta có:

\(\lim\limits_{x\rightarrow5}f\left(x\right)=\lim\limits_{x\rightarrow5}\dfrac{x^2-25}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{\left(x-5\right)\left(x+5\right)}{x-5}\)

\(=\lim\limits_{x\rightarrow5}\left(x+5\right)=10\)

Và: \(f\left(5\right)=9\)

\(\Rightarrow\lim\limits_{x\rightarrow5}f\left(x\right)\ne f\left(5\right)\)

\(\Rightarrow\) Hàm gián đoạn tại \(x_0=5\)

NV
11 tháng 3 2022

24.

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x}-1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)

Hàm liên tục tại \(x=1\) khi:

\(\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\Rightarrow\dfrac{1}{2}=k+1\)

\(\Rightarrow k=-\dfrac{1}{2}\)

25.

\(S=\dfrac{u_1}{1-q}=\dfrac{1}{1-\left(-\dfrac{1}{2}\right)}=\dfrac{2}{3}\)

NV
11 tháng 3 2022

26.

\(\overrightarrow{AD}=\overrightarrow{B'C'}\) nên \(\overrightarrow{AD}\) cùng hướng với \(\overrightarrow{B'C'}\)

27.

\(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|}\)

\(\Rightarrow\overrightarrow{a}.\overrightarrow{b}=\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|.cos\left(\overrightarrow{a};\overrightarrow{b}\right)=3.5.cos120^0=-\dfrac{15}{2}\)

28.

Cả 4 khẳng định này đều sai

Khẳng định đúng: \(\overrightarrow{OA}+\overrightarrow{OC'}=\overrightarrow{0}\)

29.

\(\overrightarrow{MD}+\overrightarrow{MC}=\overrightarrow{0}\) là khẳng định đúng

10 tháng 3 2022

câu 30 C 

10 tháng 3 2022

Câu 31 B

Nếu đường thẳng \(\alpha\) song song với mặt phẳng (P) thì có duy nhất một mặt phẳng chứa  và song song với (P).

12 tháng 10 2023

9:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

\(P=\dfrac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\cdot\dfrac{2}{x+\sqrt{x}+1}\)

b: \(x+\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}+1\right)+1>=1>0\)

2>0

Do đó: \(P=\dfrac{2}{x+\sqrt{x}+1}>0\forall x\ne1\)

23 tháng 8 2017

ok ,tk câu ok đi rùi trả lời cho

23 tháng 8 2017

a Vậy ( 2.x-15) phải bằng 1 hoặc 0 thì 1^5=1^2 hoặc 0^5=0^2

Trường hợp 1:

2.x-15=0

2.x=0+15

2.x=15

x=15:2

Mà x thuộc N nên không hợp lí.

Trường Hợp 2

2.x-15=1

2.x=1+15

2.x=16

x=16:2

x=2

2 thuộc N

<=> x=2

Câu 1: A
Câu 2: B

Câu 3: D
Câu 4: A

Câu 5: C

Câu 6: B

Câu 7: A

Câu 9: B